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— 2017 & 2018:

Figure: https://www.space.com/milky-way-m87-black-holes-compared-eht
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The Call to Adventure

— Roadmap:

e Perturbation theory I:
(i) GR in the Weak Field limit
(ii) Perturbations in a flat background.
(iii) Gauge symmetries in GR.

e Perturbation theory II:
(i) Perturbation in curved backgrounds.
(ii) Tensor spherical harmonics.
(iii) Perturbations in Schwarzschild.
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— T, M: Tangent space at p € M, i.e., the vector space which contains
the tangent vectors to all curves passing through p, with basis vector 9,

11].
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— Introducing the tensor product operation ®, we are able to create

TPSs at each p € M, which will contain the (k,1)-tensors of our
manifold.
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Tensors |

— Tensor Product Spaces (TPSs): Vector spaces formed from the
tensor product ® of two or more vector spaces defined at a point p,
which contain the (k,1)-tensors T:

T = THbzte 0 Oy @ Oy, @ da™ ... @ d™", (1)

— dz¥ the basis of (T, M)*.

— Tensor transformation law:

~ M1 A2 Mk P1 o1
Pt _ oTH 0% ...&E ox m@:c 10210 Y
vive...vg Oxo1 Oxo2 Oxk OxV1 oV P1---P1

—s Such that T = T = PGC.
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Tensors 11

— All tensors can be decomposed as:
Tyw = Ty + Ty 3)

— Symmetric tensors:
Ty =0 (4)

— Anti-symmetric tensors:

T(yu) =0 ()
— Where we define:
1
T[;w] = 5 (T,ul/ TV,LL) ) (6)
1
Ty = b (Tpw +Top) - (7)
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— Problem: our current derivative operator d, maps vectors to objects
that don’t transform as tensors:

, w90 w92,
dut” = g;,gxﬂaut” + aa;fwaiugxutu 8)
— Derivative operator requisites:
e Linearity
e Leibniz rule
map (k,l) to (k,l + 1)-tensors

Reduces to 9, when acting on scalar functions.

— Intuitive appraoch: start from 0, and fix it:

V" = 9t + CY t° (9)

no
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— C, was introduced to take care of the red term in eq.8 and make
sure that eq. 9 transforms as a tensor, but this comes at a cost:
o dx® Y dxV' b oz 9z %"
wor - ou' do’ 9P T 9xo Ozt dxYOx™

(10)

— Cy; Does NOT transform as a tensor.

— With €}, we have a derivative operator that satisfies all the
aforementioned requisites (see [1]).
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— In the case where the “corrected” derivative operator is the 9, in
which case C}, transforms as eq.10, we have:

Cro =Tho (11)

where I'; are the Christoffel symbols (see [3]).

— One can derive (see [1]) the action of V on covariant vectors given
its action on scalar functions and contravariant vectors. Such that its
action on (k,[)-tensors is given by:

Y,V HLH2 = ), V/HHzb b + (12)

V1iV2..Um... V] V1V2...Um,...U]

VIV...Um.. V]

k
P T U120
2TV ;
n=1

l
_ E o HIH2- e g
F l/mV " vivp...0...vp °
m=1
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Affine Connection

— To compare tensors at different points of our manifold — Notion of
parallel transport on M

— Equipped with V,, we define, given a coordinate system and a curve
xH(A):
Dt* dx¥
— = H 1
dA dA Vit (13)

— Such that 2% = 0 = t# parallel transported under z#(\).

— Opening V,:

Dt* dt? dz”

—— = —— 41" t"— 14

dA dA e dA (14)
— Here we see that I'}), = Parallel transport = Way to compare
tensors at different points.

— I'y is called the Connection.
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The Metric Tensor

— Symmetric (0,2)-tensor g which contains the essential information
on the geometry of our spacetime.

— g (%) = dynamical notion of distances in our 4-dimensional
curved spacetime:

ds* = g, dztdx” (15)
— Which Geroch [2] calls the “spacetime interval”.

— Also responsible to connect elements from T, M and (T,M)*:

gt =t, € (TpM)"
gt =t € T,M, (16)

— gM* the inverse metric.
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Metric Compatibility

— Is V,, (or T'y5) unique?

— However, 3 one, and only one, that satisfies [3]:

Viugap =0 (17)

— Above equation = “metric compatibility”

— Which implies that our connection can be defined in terms of g, [1,
3

Christoffel Symbols

1
L = 59°7 Ouguo + 0y = Oogiu) (18)
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. Curved Spacetime tells matter how to move

— Metric = Affine Connection = Parallel Transport = Motion of
freely-falling bodies.

Dt* o 4u _ dzt .
— For &5~ =0, t# = 7~ and A an affine parameter:

A2z dz¥ dx°
K — =0 19
d\2 Mz d\ d\ ’ (19)

— known as the Geodesic Equation.
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[V, VIt =V, V,t® — V, Vit
_ <aurgg, — 9,10, + T, — I‘SAI‘;)U) £ — 2,V 1
— R%,,, 17 — 257, V,t%. (20)

opv
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Curvature 11

— We identify both tensors in red and blue:
o R

e 5%, Torsion tensor.

ouvs Riemann tensor,

— Where:

R, = (0uT%0 — TG0 + ToaTS, — T, ) (21)

— We set S% = (I —Th) =17, =0,ie, I, =I7

(wv)

— Hence:
Vi, VJt% = R, 7. (22)
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— Properties of the Riemann tensor:

* Rupe = Riyjjpo-

® R;wpo = Rpo;w'

° V[aRuy]pa =0.

— Contracting the 1st and 3rd indices:
6pa Ral/po = Rauacr = Rya' (23)

— Such that:

Ricci Tensor

Rm/ = (804er - al/l—‘g,u + Fg/\rf\/u - 3}\1_‘2\[#) (24)

— Subsequently:
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— The Einstein equation arises naturally from the variation of the
Einstein-Hilbert action:

Sk = / d*z/—gR. (26)

— To include matter is to make:

1
5= To6ra

S+ Su (27)
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Einstein equations

— The Einstein equation arises naturally from the variation of the
Einstein-Hilbert action:

Sy = /d4x\/—gR. (26)
— To include matter is to make:
1
pu— 2
S 167rGSH + Sm (27)

— Varying S wrt g,,, and setting 65 = 0 we get:

Einstein equations

1
Gy & By — EQWR = ST, (28)

where T}, = \/_—7%?3—;‘4”, and G, the Einstein Tensor.
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Solutions

— To solve the Einstein equations is to solve for g,,. Some notable
metrics:

Minkowski spacetime

ds? ppime = —dt? + dr? + r?dQ2. (29)

Schwazrschild spacetime

=i
ds’g = — (1 — %) dt? + (1 — %) dr? + r?dQ?, (30)

— where we used ¢ = G = 1.



Next Time...

Tomorrow: GR in the Weak Field limit!!!

Thank you!
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