Black Hole Perturbation Theory: An Introduction

Vitor Fernandes Guimarães, BSc.

I São Paulo School on Gravitational Physics

July 15, 2024

Prefatory Matters

Greetings

 \rightarrow Acknowledgements

- \rightarrow Acknowledgements
- \rightarrow Introduction

Background

- BSc in Physics at UFABC (2015-2021), Advisor: André Gustavo Scagliusi Landulfo, PhD.
- MSc in Physics at UFABC (2022-), Advisor: Roldão da Rocha Jr, PhD.

Why We're Here

 \rightarrow 2015:

 $Figure: \ https://www.ligo.caltech.edu/image/ligo20160211a$

Why We're Here

 \rightarrow 2017 & 2018:

Figure: https://www.space.com/milky-way-m87-black-holes-compared-eht

The Call to Adventure

The Call to Adventure

 $\rightarrow \operatorname{Roadmap}$

• Perturbation theory I

- Perturbation theory I:
 - (i) GR in the Weak Field limit

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.
 - (iii) Gauge symmetries in GR.

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.
 - (iii) Gauge symmetries in GR.
- Perturbation theory II

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.
 - (iii) Gauge symmetries in GR.
- Perturbation theory II:
 - (i) Perturbation in curved backgrounds.

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.
 - (iii) Gauge symmetries in GR.
- Perturbation theory II:
 - (i) Perturbation in curved backgrounds.
 - (ii) Tensor spherical harmonics.

- Perturbation theory I:
 - (i) GR in the Weak Field limit
 - (ii) Perturbations in a flat background.
 - (iii) Gauge symmetries in GR.
- Perturbation theory II:
 - (i) Perturbation in curved backgrounds.
 - (ii) Tensor spherical harmonics.
 - (iii) Perturbations in Schwarzschild.

GR Crash Course

The Spacetime Manifold

 \rightarrow Core Principles:

The Spacetime Manifold

 \rightarrow Core Principles:

• Einstein Equivalence Principle (EEP)

\rightarrow Core Principles:

- Einstein Equivalence Principle (EEP)
- Principle of General Covariance (PGC).

The Spacetime Manifold

 \rightarrow Core Principles:

- Einstein Equivalence Principle (EEP)
- Principle of General Covariance (PGC).

Tangent Spaces I

 $\rightarrow T_p \mathcal{M}$: Tangent space at $p \in \mathcal{M}$, i.e., the vector space which contains the tangent vectors to all curves passing through p, with basis vector ∂_{μ} [1]. $\rightarrow T_p \mathcal{M}$: Tangent space at $p \in \mathcal{M}$, i.e., the vector space which contains the tangent vectors to all curves passing through p, with basis vector ∂_{μ} [1].

 $\rightarrow T_p \mathcal{M}$: Tangent space at $p \in \mathcal{M}$, i.e., the vector space which contains the tangent vectors to all curves passing through p, with basis vector ∂_{μ} [1].

 \rightarrow Introducing the tensor product operation \otimes , we are able to create TPSs at each $p \in \mathcal{M}$, which will contain the (k,l)-tensors of our manifold.

$$\mathbf{T} = T^{\mu_1 \mu_2 \dots \mu_k}_{\nu_1 \nu_2 \dots \nu_l} \partial_{\mu_1} \dots \otimes \partial_{\mu_k} \otimes dx^{\nu_1} \dots \otimes dx^{\nu_l}, \tag{1}$$

 $\rightarrow dx^{\nu_l}$ the basis of $(T_p\mathcal{M})^*$.

$$\mathbf{T} = T^{\mu_1 \mu_2 \dots \mu_k}{}_{\nu_1 \nu_2 \dots \nu_l} \partial_{\mu_1} \dots \otimes \partial_{\mu_k} \otimes dx^{\nu_1} \dots \otimes dx^{\nu_l}, \tag{1}$$

- $\rightarrow dx^{\nu_l}$ the basis of $(T_p\mathcal{M})^*$.
- \rightarrow Tensor transformation law:

$$\mathbf{T} = T^{\mu_1 \mu_2 \dots \mu_k}_{\nu_1 \nu_2 \dots \nu_l} \partial_{\mu_1} \dots \otimes \partial_{\mu_k} \otimes dx^{\nu_1} \dots \otimes dx^{\nu_l}, \tag{1}$$

- $\rightarrow dx^{\nu_l}$ the basis of $(T_p\mathcal{M})^*$.
- \rightarrow Tensor transformation law:

$$\tilde{T}^{\mu_1\mu_2\dots\mu_k}_{\ \nu_1\nu_2\dots\nu_l} = \frac{\partial \tilde{x}^{\mu_1}}{\partial x^{\sigma_1}} \frac{\partial \tilde{x}^{\mu_2}}{\partial x^{\sigma_2}} \dots \frac{\partial \tilde{x}^{\mu_k}}{\partial x^{\sigma_k}} \frac{\partial x^{\rho_1}}{\partial \tilde{x}^{\nu_1}} \dots \frac{\partial x^{\rho_l}}{\partial \tilde{x}^{\nu_l}} T^{\sigma_1\sigma_2\dots\sigma_k}_{\ \rho_1\dots\rho_l} \,. \tag{2}$$

 \rightarrow Such that $\tilde{\mathbf{T}} = \mathbf{T} \Rightarrow \text{PGC}.$

 \rightarrow All tensors can be decomposed as:

 \rightarrow All tensors can be decomposed as:

$$T_{\mu\nu} = T_{[\mu\nu]} + T_{(\mu\nu)}.$$
 (3)

 \rightarrow All tensors can be decomposed as:

$$T_{\mu\nu} = T_{[\mu\nu]} + T_{(\mu\nu)}.$$
 (3)

 \rightarrow Symmetric tensors:

$$T_{[\mu\nu]} = 0 \tag{4}$$

 \rightarrow All tensors can be decomposed as:

$$T_{\mu\nu} = T_{[\mu\nu]} + T_{(\mu\nu)}.$$
 (3)

 \rightarrow Symmetric tensors:

$$T_{[\mu\nu]} = 0 \tag{4}$$

 \rightarrow Anti-symmetric tensors:

$$T_{(\mu\nu)} = 0 \tag{5}$$

 \rightarrow All tensors can be decomposed as:

$$T_{\mu\nu} = T_{[\mu\nu]} + T_{(\mu\nu)}.$$
 (3)

 \rightarrow Symmetric tensors:

$$T_{[\mu\nu]} = 0 \tag{4}$$

 \rightarrow Anti-symmetric tensors:

$$T_{(\mu\nu)} = 0 \tag{5}$$

 \rightarrow Where we define:

$$T_{[\mu\nu]} \equiv \frac{1}{2} (T_{\mu\nu} - T_{\nu\mu}), \qquad (6)$$

$$T_{(\mu\nu)} \equiv \frac{1}{2} (T_{\mu\nu} + T_{\nu\mu}). \qquad (7)$$

Covariant Derivative I

 \rightarrow Problem: our current derivative operator ∂_{μ} maps vectors to objects that don't transform as tensors:
Covariant Derivative I

 \rightarrow Problem: our current derivative operator ∂_{μ} maps vectors to objects that don't transform as tensors:

$$\partial_{\mu'}t^{\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial x^{\nu'}}{\partial x^{\nu}}\partial_{\mu}t^{\nu} + \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial^2 x^{\nu'}}{\partial x^{\mu}\partial x^{\nu}}t^{\nu}$$
(8)

Covariant Derivative I

 \rightarrow Problem: our current derivative operator ∂_{μ} maps vectors to objects that don't transform as tensors:

$$\partial_{\mu'}t^{\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial x^{\nu'}}{\partial x^{\nu}}\partial_{\mu}t^{\nu} + \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial^2 x^{\nu'}}{\partial x^{\mu}\partial x^{\nu}}t^{\nu}$$
(8)

- \rightarrow Derivative operator requisites:
 - Linearity
 - Leibniz rule
 - map (k, l) to (k, l+1)-tensors
 - Reduces to ∂_{μ} when acting on scalar functions.

Covariant Derivative I

 \rightarrow Problem: our current derivative operator ∂_{μ} maps vectors to objects that don't transform as tensors:

$$\partial_{\mu'}t^{\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial x^{\nu'}}{\partial x^{\nu}}\partial_{\mu}t^{\nu} + \frac{\partial x^{\mu}}{\partial x^{\mu'}}\frac{\partial^2 x^{\nu'}}{\partial x^{\mu}\partial x^{\nu}}t^{\nu}$$
(8)

- \rightarrow Derivative operator requisites:
 - Linearity
 - Leibniz rule
 - map (k, l) to (k, l+1)-tensors
 - Reduces to ∂_{μ} when acting on scalar functions.

 \rightarrow Intuitive appraoch: start from ∂_{μ} and fix it:

$$\nabla_{\mu}t^{\nu} = \partial_{\mu}t^{\nu} + C^{\nu}_{\mu\sigma}t^{\sigma} \tag{9}$$

 $\rightarrow C^{\nu}_{\mu\sigma}$ was introduced to take care of the red term in eq.8 and make sure that eq. 9 transforms as a tensor, but this comes at a cost:

 $\rightarrow C^{\nu}_{\mu\sigma}$ was introduced to take care of the red term in eq.8 and make sure that eq. 9 transforms as a tensor, but this comes at a cost:

$$C^{\nu'}_{\mu'\sigma'} = \frac{\partial x^{\alpha}}{\partial \mu'} \frac{\partial x^{\gamma}}{\partial \sigma'} \frac{\partial x^{\nu'}}{\partial x^{\beta}} C^{\beta}_{\alpha\gamma} - \frac{\partial x^{\gamma}}{\partial x^{\sigma'}} \frac{\partial x^{\alpha}}{\partial x^{\mu'}} \frac{\partial^2 x^{\nu'}}{\partial x^{\gamma} \partial x^{\alpha}}$$
(10)

 $\rightarrow C^{\nu}_{\mu\sigma}$ Does NOT transform as a tensor.

 $\rightarrow C^{\nu}_{\mu\sigma}$ was introduced to take care of the red term in eq.8 and make sure that eq. 9 transforms as a tensor, but this comes at a cost:

$$C^{\nu'}_{\mu'\sigma'} = \frac{\partial x^{\alpha}}{\partial \mu'} \frac{\partial x^{\gamma}}{\partial \sigma'} \frac{\partial x^{\nu'}}{\partial x^{\beta}} C^{\beta}_{\alpha\gamma} - \frac{\partial x^{\gamma}}{\partial x^{\sigma'}} \frac{\partial x^{\alpha}}{\partial x^{\mu'}} \frac{\partial^2 x^{\nu'}}{\partial x^{\gamma} \partial x^{\alpha}}$$
(10)

 $\rightarrow C^{\nu}_{\mu\sigma}$ Does NOT transform as a tensor.

 \rightarrow With $C^{\nu}_{\mu\sigma}$ we have a derivative operator that satisfies all the aforementioned requisites (see [1]).

Covariant Derivative III

 \rightarrow In the case where the "corrected" derivative operator is the ∂_{μ} , in which case $C^{\nu}_{\mu\sigma}$ transforms as eq.10, we have:

Covariant Derivative III

 \rightarrow In the case where the "corrected" derivative operator is the ∂_{μ} , in which case $C^{\nu}_{\mu\sigma}$ transforms as eq.10, we have:

$$C^{\nu}_{\mu\sigma} = \Gamma^{\nu}_{\mu\sigma}, \qquad (11)$$

where $\Gamma^{\nu}_{\mu\sigma}$ are the Christoffel symbols (see [3]).

Covariant Derivative III

 \rightarrow In the case where the "corrected" derivative operator is the ∂_{μ} , in which case $C^{\nu}_{\mu\sigma}$ transforms as eq.10, we have:

$$C^{\nu}_{\mu\sigma} = \Gamma^{\nu}_{\mu\sigma}, \qquad (11)$$

where $\Gamma^{\nu}_{\mu\sigma}$ are the Christoffel symbols (see [3]).

 \rightarrow One can derive (see [1]) the action of ∇ on covariant vectors given its action on scalar functions and contravariant vectors. Such that its action on (k, l)-tensors is given by:

$$\nabla_{\rho} V^{\mu_{1}\mu_{2}...\mu_{n}...\mu_{k}}_{\nu_{1}\nu_{2}...\nu_{m}...\nu_{l}} = \partial_{\rho} V^{\mu_{1}\mu_{2}\mu_{...\mu_{n}...\mu_{k}}}_{\nu_{1}\nu_{2}...\nu_{m}...\nu_{l}} + \sum_{n=1}^{k} \Gamma^{\mu_{n}}_{\rho\sigma} V^{\mu_{1}\mu_{2}...\sigma_{...\mu_{k}}}_{\nu_{1}\nu_{2}...\nu_{m}...\nu_{l}} - \sum_{m=1}^{l} \Gamma^{\sigma}_{\rho\nu_{m}} V^{\mu_{1}\mu_{2}...\mu_{n}...\mu_{k}}_{\nu_{1}\nu_{2}...\sigma_{...\nu_{l}}}.$$
(12)

 \to To compare tensors at different points of our manifold \to Notion of parallel transport on ${\cal M}$

 \to To compare tensors at different points of our manifold \to Notion of parallel transport on ${\cal M}$

 \rightarrow Equipped with ∇_{μ} we define, given a coordinate system and a curve $x^{\mu}(\lambda)$:

 \to To compare tensors at different points of our manifold \to Notion of parallel transport on $\mathcal M$

 \rightarrow Equipped with ∇_{μ} we define, given a coordinate system and a curve $x^{\mu}(\lambda)$:

$$\frac{Dt^{\mu}}{d\lambda} \equiv \frac{dx^{\nu}}{d\lambda} \nabla_{\nu} t^{\mu} \tag{13}$$

 \rightarrow Such that $\frac{Dt^{\mu}}{d\lambda} = 0 \Rightarrow t^{\mu}$ parallel transported under $x^{\mu}(\lambda)$.

 \to To compare tensors at different points of our manifold \to Notion of parallel transport on $\mathcal M$

 \rightarrow Equipped with ∇_{μ} we define, given a coordinate system and a curve $x^{\mu}(\lambda)$:

$$\frac{Dt^{\mu}}{d\lambda} \equiv \frac{dx^{\nu}}{d\lambda} \nabla_{\nu} t^{\mu} \tag{13}$$

 \rightarrow Such that $\frac{Dt^{\mu}}{d\lambda} = 0 \Rightarrow t^{\mu}$ parallel transported under $x^{\mu}(\lambda)$.

 \rightarrow Opening ∇_{ν} :

$$\frac{Dt^{\mu}}{d\lambda} \equiv \frac{dt^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma} t^{\sigma} \frac{dx^{\nu}}{d\lambda}$$
(14)

 \to To compare tensors at different points of our manifold \to Notion of parallel transport on $\mathcal M$

 \rightarrow Equipped with ∇_{μ} we define, given a coordinate system and a curve $x^{\mu}(\lambda)$:

$$\frac{Dt^{\mu}}{d\lambda} \equiv \frac{dx^{\nu}}{d\lambda} \nabla_{\nu} t^{\mu} \tag{13}$$

 \rightarrow Such that $\frac{Dt^{\mu}}{d\lambda} = 0 \Rightarrow t^{\mu}$ parallel transported under $x^{\mu}(\lambda)$.

 $\rightarrow \text{Opening } \nabla_{\nu}:$ $\frac{Dt^{\mu}}{d\lambda} \equiv \frac{dt^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma} t^{\sigma} \frac{dx^{\nu}}{d\lambda}$ (14)

 \rightarrow Here we see that $\Gamma^{\mu}_{\nu\sigma} \Rightarrow$ Parallel transport \Rightarrow Way to compare tensors at different points.

 $\rightarrow \Gamma^{\mu}_{\nu\sigma}$ is called the Connection.

 \rightarrow Symmetric (0,2)-tensor **g** which contains the essential information on the geometry of our spacetime.

 \rightarrow Symmetric (0,2)-tensor **g** which contains the essential information on the geometry of our spacetime.

 $\rightarrow g_{\mu\nu}(x^{\alpha}) \Rightarrow$ dynamical notion of distances in our 4-dimensional curved spacetime:

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu \tag{15}$$

 \rightarrow Which Geroch [2] calls the "spacetime interval".

 \rightarrow Symmetric (0,2)-tensor **g** which contains the essential information on the geometry of our spacetime.

 $\rightarrow g_{\mu\nu}(x^{\alpha}) \Rightarrow$ dynamical notion of distances in our 4-dimensional curved spacetime:

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu \tag{15}$$

 \rightarrow Which Geroch [2] calls the "spacetime interval".

 \rightarrow Also responsible to connect elements from $T_p\mathcal{M}$ and $(T_p\mathcal{M})^*$:

 \rightarrow Symmetric (0,2)-tensor **g** which contains the essential information on the geometry of our spacetime.

 $\rightarrow g_{\mu\nu}(x^{\alpha}) \Rightarrow$ dynamical notion of distances in our 4-dimensional curved spacetime:

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu \tag{15}$$

 \rightarrow Which Geroch [2] calls the "spacetime interval".

 \rightarrow Also responsible to connect elements from $T_p\mathcal{M}$ and $(T_p\mathcal{M})^*$:

$$g_{\mu\nu}t^{\mu} = t_{\nu} \in (T_p\mathcal{M})^*$$

$$g^{\mu\nu}t_{\mu} = t^{\nu} \in T_p\mathcal{M},$$
 (16)

 $\rightarrow g^{\mu\nu}$ the inverse metric.

 \rightarrow Is ∇_{ν} (or $\Gamma^{\mu}_{\nu\sigma}$) unique?

- \rightarrow Is ∇_{ν} (or $\Gamma^{\mu}_{\nu\sigma}$) unique?
- \rightarrow However, \exists one, and only one, that satisfies [3]:

$$\nabla_{\mu}g_{\alpha\beta} = 0 \tag{17}$$

 \rightarrow Is ∇_{ν} (or $\Gamma^{\mu}_{\nu\sigma}$) unique?

 \rightarrow However, \exists one, and only one, that satisfies [3]:

$$\nabla_{\mu}g_{\alpha\beta} = 0 \tag{17}$$

\rightarrow Above equation = "metric compatibility"

 \rightarrow Which implies that our connection can be defined in terms of $g_{\mu\nu}$ [1, 3]:

 \rightarrow Is ∇_{ν} (or $\Gamma^{\mu}_{\nu\sigma}$) unique?

 \rightarrow However, \exists one, and only one, that satisfies [3]:

$$\nabla_{\mu}g_{\alpha\beta} = 0 \tag{17}$$

- \rightarrow Above equation = "metric compatibility"
- \rightarrow Which implies that our connection can be defined in terms of $g_{\mu\nu}$ [1, 3]:

Christoffel Symbols

$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2}g^{\alpha\sigma}(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\mu\sigma} - \partial_{\sigma}g_{\mu\nu}) \tag{18}$$

 \rightarrow Metric \Rightarrow Affine Connection \Rightarrow Parallel Transport \Rightarrow Motion of freely-falling bodies.

 \rightarrow Metric \Rightarrow Affine Connection \Rightarrow Parallel Transport \Rightarrow Motion of freely-falling bodies.

 \rightarrow For $\frac{Dt^{\mu}}{d\lambda} = 0$, $t^{\mu} = \frac{dx^{\mu}}{d\lambda}$ and λ an affine parameter:

 \rightarrow Metric \Rightarrow Affine Connection \Rightarrow Parallel Transport \Rightarrow Motion of freely-falling bodies.

 $\rightarrow \text{ For } \frac{Dt^{\mu}}{d\lambda} = 0, \ t^{\mu} = \frac{dx^{\mu}}{d\lambda} \text{ and } \lambda \text{ an affine parameter:}$ $\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\nu\sigma} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\sigma}}{d\lambda} = 0,$ (19)

 \rightarrow known as the Geodesic Equation.

Curvature I

$$[\nabla_{\mu}, \nabla_{\nu}]t^{\alpha} = \nabla_{\mu}\nabla_{\nu}t^{\alpha} - \nabla_{\nu}\nabla_{\mu}t^{\alpha}$$

= $\left(\partial_{\mu}\Gamma^{\alpha}_{\nu\sigma} - \partial_{\nu}\Gamma^{\alpha}_{\mu\sigma} + \Gamma^{\alpha}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right)t^{\sigma} - 2\Gamma^{\rho}_{[\mu\nu]}\nabla_{\rho}t^{\alpha}$
= $R^{\alpha}_{\ \sigma\mu\nu}t^{\sigma} - 2S^{\rho}_{\mu\nu}\nabla_{\rho}t^{\alpha}.$ (20)

Curvature II

\rightarrow We identify both tensors in red and blue:

- $R^{\alpha}_{\ \sigma\mu\nu}$, Riemann tensor,
- $S^{\rho}_{\ \mu\nu}$, Torsion tensor.

Curvature II

\rightarrow We identify both tensors in red and blue:

- $R^{\alpha}_{\ \sigma\mu\nu}$, Riemann tensor,
- $S^{\rho}_{\ \mu\nu}$, Torsion tensor.

\rightarrow Where:

Riemann Tensor

$$R^{\alpha}_{\ \sigma\mu\nu} \equiv \left(\partial_{\mu}\Gamma^{\alpha}_{\nu\sigma} - \partial_{\nu}\Gamma^{\alpha}_{\mu\sigma} + \Gamma^{\alpha}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right)$$
(21)

Curvature II

\rightarrow We identify both tensors in red and blue:

- $R^{\alpha}_{\ \sigma\mu\nu}$, Riemann tensor,
- $S^{\rho}_{\ \mu\nu}$, Torsion tensor.

\rightarrow Where:

Riemann Tensor

$$R^{\alpha}_{\ \sigma\mu\nu} \equiv \left(\partial_{\mu}\Gamma^{\alpha}_{\nu\sigma} - \partial_{\nu}\Gamma^{\alpha}_{\mu\sigma} + \Gamma^{\alpha}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right) \tag{21}$$

$$\rightarrow \text{We set } S^{\rho}_{\mu\nu} \equiv \frac{1}{2} (\Gamma^{\rho}_{\mu\nu} - \Gamma^{\rho}_{\mu\nu}) = \Gamma^{\rho}_{[\mu\nu]} = 0, \text{ i.e., } \Gamma^{\rho}_{\mu\nu} = \Gamma^{\rho}_{(\mu\nu)}.$$

 \rightarrow Hence:

$$[\nabla_{\mu}, \nabla_{\nu}]t^{\alpha} = R^{\alpha}{}_{\sigma\mu\nu}t^{\sigma}.$$
 (22)

Curvature III

 \rightarrow Properties of the Riemann tensor:

•
$$R_{\mu\nu\rho\sigma} = R_{[\mu\nu][\rho\sigma]}$$
.

• $R_{\mu\nu\rho\sigma} = R_{\rho\sigma\mu\nu}.$

•
$$\nabla_{[\alpha}R_{\mu\nu]\rho\sigma} = 0.$$

Curvature III

 \rightarrow Properties of the Riemann tensor:

- $R_{\mu\nu\rho\sigma} = R_{[\mu\nu][\rho\sigma]}$. • $R_{\mu\nu\rho\sigma} = R_{\rho\sigma\mu\nu}$.
- $\nabla_{[\alpha}R_{\mu\nu]\rho\sigma} = 0.$

 \rightarrow Contracting the 1st and 3rd indices:

$$\delta^{\rho}_{\ \alpha}R^{\alpha}_{\ \nu\rho\sigma} = R^{\alpha}_{\ \nu\alpha\sigma} = R_{\nu\sigma}.$$
(23)

 \rightarrow Such that:

Ricci Tensor

$$R_{\mu\nu} = \left(\partial_{\alpha}\Gamma^{\alpha}_{\mu\nu} - \partial_{\nu}\Gamma^{\alpha}_{\alpha\mu} + \Gamma^{\alpha}_{\alpha\lambda}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\alpha\mu}\right)$$
(24)

Curvature III

 \rightarrow Properties of the Riemann tensor:

- $R_{\mu\nu\rho\sigma} = R_{[\mu\nu][\rho\sigma]}$. • $R_{\mu\nu\rho\sigma} = R_{\rho\sigma\mu\nu}$.
- $\nabla_{[\alpha}R_{\mu\nu]\rho\sigma} = 0.$

 \rightarrow Contracting the 1st and 3rd indices:

$$\delta^{\rho}_{\ \alpha}R^{\alpha}_{\ \nu\rho\sigma} = R^{\alpha}_{\ \nu\alpha\sigma} = R_{\nu\sigma}.$$
(23)

 \rightarrow Such that:

Ricci Tensor

$$R_{\mu\nu} = \left(\partial_{\alpha}\Gamma^{\alpha}_{\mu\nu} - \partial_{\nu}\Gamma^{\alpha}_{\alpha\mu} + \Gamma^{\alpha}_{\alpha\lambda}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\alpha\mu}\right)$$
(24)

 \rightarrow Subsequently:

$$R^{\mu}_{\ \mu} = R \tag{25}$$

Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

$$S_H = \int d^4x \sqrt{-g}R.$$
 (26)

Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

$$S_H = \int d^4x \sqrt{-g}R.$$
 (26)

 \rightarrow To include matter is to make:
Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

$$S_H = \int d^4x \sqrt{-g}R.$$
 (26)

 \rightarrow To include matter is to make:

$$S = \frac{1}{16\pi G} S_H + S_M \tag{27}$$

Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

$$S_H = \int d^4x \sqrt{-g}R.$$
 (26)

 \rightarrow To include matter is to make:

$$S = \frac{1}{16\pi G} S_H + S_M \tag{27}$$

 \rightarrow Varying S wrt $g_{\mu\nu}$ and setting $\delta S = 0$ we get:

Einstein equations

 \rightarrow The Einstein equation arises naturally from the variation of the Einstein-Hilbert action:

$$S_H = \int d^4x \sqrt{-g}R.$$
 (26)

 \rightarrow To include matter is to make:

$$S = \frac{1}{16\pi G} S_H + S_M \tag{27}$$

 \rightarrow Varying S wrt $g_{\mu\nu}$ and setting $\delta S=0$ we get:

Einstein equations

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}, \qquad (28)$$

where $T_{\mu\nu} \equiv \frac{-2}{\sqrt{-g}} \frac{\delta S_M}{\delta g_{\mu\nu}}$, and $G_{\mu\nu}$ the Einstein Tensor.

 \rightarrow To solve the Einstein equations is to solve for $g_{\mu\nu}.$ Some notable metrics:

 \rightarrow To solve the Einstein equations is to solve for $g_{\mu\nu}.$ Some notable metrics:

Minkowski spacetime

$$ds^{2}_{Mink} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2}.$$
 (29)

 \rightarrow To solve the Einstein equations is to solve for $g_{\mu\nu}.$ Some notable metrics:

Minkowski spacetime

$$ds^{2}_{Mink} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2}.$$
 (29)

Schwazrschild spacetime

$$ds^{2}_{Sch} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}, \qquad (30)$$

 \rightarrow where we used c = G = 1.

Tomorrow: GR in the Weak Field limit!!!

Thank you!

- [1] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.
- Robert Geroch. General relativity: 1972 lecture notes. Vol. 1. Minkowski Institute Press, 2013.
- [3] Robert M Wald. *General relativity*. University of Chicago press, 2010.