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The Call to Adventure

→ Roadmap

:

• Perturbation theory I:
(i) GR in the Weak Field limit
(ii) Perturbations in a flat background.
(iii) Gauge symmetries in GR.

• Perturbation theory II:
(i) Perturbation in curved backgrounds.
(ii) Tensor spherical harmonics.
(iii) Perturbations in Schwarzschild.
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The Spacetime Manifold

→ Core Principles:

• Einstein Equivalence Principle (EEP)
• Principle of General Covariance (PGC).
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Tangent Spaces I
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Tangent Spaces II

→ TpM: Tangent space at p ∈ M, i.e., the vector space which contains
the tangent vectors to all curves passing through p, with basis vector ∂µ
[1].

M

pTpM

→ Introducing the tensor product operation ⊗, we are able to create
TPSs at each p ∈ M, which will contain the (k,l)-tensors of our
manifold.
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Tensors I

→ Tensor Product Spaces (TPSs): Vector spaces formed from the
tensor product ⊗ of two or more vector spaces defined at a point p,
which contain the (k,l)-tensors T:

T = Tµ1µ2...µk
ν1ν2...νl

∂µ1 ....⊗ ∂µk
⊗ dxν1 ....⊗ dxνl , (1)

→ dxνl the basis of (TpM)∗.

→ Tensor transformation law:

T̃µ1µ2...µk
ν1ν2...νl

=
∂x̃µ1

∂xσ1

∂x̃µ2

∂xσ2
...
∂x̃µk

∂xσk

∂xρ1

∂x̃ν1
...
∂xρl

∂x̃νl
T σ1σ2...σk

ρ1...ρl
. (2)

→ Such that T̃ = T ⇒ PGC.
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Tensors II

→ All tensors can be decomposed as:

Tµν = T[µν] + T(µν). (3)

→ Symmetric tensors:
T[µν] = 0 (4)

→ Anti-symmetric tensors:

T(µν) = 0 (5)

→ Where we define:

T[µν] ≡
1

2
(Tµν − Tνµ) , (6)

T(µν) ≡
1

2
(Tµν + Tνµ) . (7)
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Covariant Derivative I

→ Problem: our current derivative operator ∂µ maps vectors to objects
that don’t transform as tensors:

∂µ′tν
′
=

∂xµ

∂xµ′
∂xν

′

∂xν
∂µt

ν +
∂xµ

∂xµ′
∂2xν

′

∂xµ∂xν
tν (8)

→ Derivative operator requisites:
• Linearity
• Leibniz rule
• map (k, l) to (k, l + 1)-tensors
• Reduces to ∂µ when acting on scalar functions.

→ Intuitive appraoch: start from ∂µ and fix it:

∇µt
ν = ∂µt

ν + Cν
µσt

σ (9)
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Covariant Derivative II

→ Cν
µσ was introduced to take care of the red term in eq.8 and make

sure that eq. 9 transforms as a tensor, but this comes at a cost:

Cν′
µ′σ′ =

∂xα

∂µ′
∂xγ

∂σ′
∂xν

′

∂xβ
Cβ
αγ −

∂xγ

∂xσ′
∂xα

∂xµ′
∂2xν

′

∂xγ∂xα
(10)

→ Cν
µσ Does NOT transform as a tensor.

→ With Cν
µσ we have a derivative operator that satisfies all the

aforementioned requisites (see [1]).
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Covariant Derivative III
→ In the case where the “corrected” derivative operator is the ∂µ, in
which case Cν

µσ transforms as eq.10, we have:

Cν
µσ = Γν

µσ, (11)

where Γν
µσ are the Christoffel symbols (see [3]).

→ One can derive (see [1]) the action of ∇ on covariant vectors given
its action on scalar functions and contravariant vectors. Such that its
action on (k, l)-tensors is given by:

∇ρV
µ1µ2...µn...µk

ν1ν2...νm...νl
= ∂ρV

µ1µ2µ...µn...µk
ν1ν2...νm...νl

+ (12)

+
k∑

n=1

Γµn
ρσV

µ1µ2...σ...µk
ν1ν2...νm...νl

−

−
l∑

m=1

Γσ
ρνmV

µ1µ2...µn...µk
ν1ν2...σ...νl

.
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Affine Connection

→ To compare tensors at different points of our manifold → Notion of
parallel transport on M

→ Equipped with ∇µ we define, given a coordinate system and a curve
xµ(λ):

Dtµ

dλ
≡ dxν

dλ
∇νt

µ (13)

→ Such that Dtµ

dλ = 0 ⇒ tµ parallel transported under xµ(λ).

→ Opening ∇ν :
Dtµ

dλ
≡ dtµ

dλ
+ Γµ

νσt
σ dx

ν

dλ
(14)

→ Here we see that Γµ
νσ ⇒ Parallel transport ⇒ Way to compare

tensors at different points.

→ Γµ
νσ is called the Connection.
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The Metric Tensor

→ Symmetric (0,2)-tensor g which contains the essential information
on the geometry of our spacetime.

→ gµν(x
α) ⇒ dynamical notion of distances in our 4-dimensional

curved spacetime:
ds2 = gµνdx

µdxν (15)

→ Which Geroch [2] calls the “spacetime interval”.

→ Also responsible to connect elements from TpM and (TpM)∗:

gµνt
µ = tν ∈ (TpM)∗

gµνtµ = tν ∈ TpM, (16)

→ gµν the inverse metric.
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Metric Compatibility

→ Is ∇ν (or Γµ
νσ) unique?

→ However, ∃ one, and only one, that satisfies [3]:

∇µgαβ = 0 (17)

→ Above equation = “metric compatibility”

→ Which implies that our connection can be defined in terms of gµν [1,
3]:

Christoffel Symbols

Γα
µν =

1

2
gασ(∂µgνσ + ∂νgµσ − ∂σgµν) (18)
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... Curved Spacetime tells matter how to move

→ Metric ⇒ Affine Connection ⇒ Parallel Transport ⇒ Motion of
freely-falling bodies.

→ For Dtµ

dλ = 0, tµ = dxµ

dλ and λ an affine parameter:

d2xµ

dλ2
+ Γµ

νσ

dxν

dλ

dxσ

dλ
= 0, (19)

→ known as the Geodesic Equation.
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Curvature I

∇µ

∇ν
p

tα

tα
∗

[∇µ,∇ν ]t
α = ∇µ∇νt

α −∇ν∇µt
α

=
(
∂µΓ

α
νσ − ∂νΓ

α
µσ + Γα

µλΓ
λ
νσ − Γα

νλΓ
λ
µσ

)
tσ − 2Γρ

[µν]∇ρt
α

= Rα
σµνt

σ − 2Sρ
µν∇ρt

α. (20)
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Curvature II

→ We identify both tensors in red and blue:
• Rα

σµν , Riemann tensor,
• Sρ

µν , Torsion tensor.

→ Where:

Riemann Tensor

Rα
σµν ≡

(
∂µΓ

α
νσ − ∂νΓ

α
µσ + Γα

µλΓ
λ
νσ − Γα

νλΓ
λ
µσ

)
(21)

→ We set Sρ
µν ≡ 1

2(Γ
ρ
µν − Γρ

µν) = Γρ
[µν] = 0, i.e., Γρ

µν = Γρ
(µν).

→ Hence:
[∇µ,∇ν ]t

α = Rα
σµνt

σ. (22)
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Curvature III
→ Properties of the Riemann tensor:

• Rµνρσ = R[µν][ρσ].
• Rµνρσ = Rρσµν .
• ∇[αRµν]ρσ = 0.

→ Contracting the 1st and 3rd indices:

δραR
α
νρσ = Rα

νασ = Rνσ. (23)

→ Such that:

Ricci Tensor

Rµν =
(
∂αΓ

α
µν − ∂νΓ

α
αµ + Γα

αλΓ
λ
νµ − Γα

νλΓ
λ
αµ

)
(24)

→ Subsequently:
Rµ

µ = R (25)



Curvature III
→ Properties of the Riemann tensor:

• Rµνρσ = R[µν][ρσ].
• Rµνρσ = Rρσµν .
• ∇[αRµν]ρσ = 0.

→ Contracting the 1st and 3rd indices:

δραR
α
νρσ = Rα

νασ = Rνσ. (23)

→ Such that:

Ricci Tensor

Rµν =
(
∂αΓ

α
µν − ∂νΓ

α
αµ + Γα

αλΓ
λ
νµ − Γα

νλΓ
λ
αµ

)
(24)

→ Subsequently:
Rµ

µ = R (25)



Curvature III
→ Properties of the Riemann tensor:

• Rµνρσ = R[µν][ρσ].
• Rµνρσ = Rρσµν .
• ∇[αRµν]ρσ = 0.

→ Contracting the 1st and 3rd indices:

δραR
α
νρσ = Rα

νασ = Rνσ. (23)

→ Such that:

Ricci Tensor

Rµν =
(
∂αΓ

α
µν − ∂νΓ

α
αµ + Γα

αλΓ
λ
νµ − Γα

νλΓ
λ
αµ

)
(24)

→ Subsequently:
Rµ

µ = R (25)



Einstein equations

→ The Einstein equation arises naturally from the variation of the
Einstein-Hilbert action:

SH =

∫
d4x

√
−gR. (26)

→ To include matter is to make:

S =
1

16πG
SH + SM (27)

→ Varying S wrt gµν and setting δS = 0 we get:

Einstein equations

Gµν ≡ Rµν −
1

2
gµνR = 8πTµν , (28)

where Tµν ≡ −2√
−g

δSM
δgµν

, and Gµν the Einstein Tensor.
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Solutions

→ To solve the Einstein equations is to solve for gµν . Some notable
metrics:

Minkowski spacetime

ds2Mink = −dt2 + dr2 + r2dΩ2. (29)

Schwazrschild spacetime

ds2Sch = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (30)

→ where we used c = G = 1.
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Next Time...

Tomorrow: GR in the Weak Field limit!!!

Thank you!
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