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GR in the Weak Field limit




The Weak Field Limit

— Basic assumption:

Weak Field condition

Guv = M + I, |hw/| <1 (1)

— Two possible interpretations [3, 5, 1]:
e Flat spacetime + small perturbation
e (0,2)-tensor field + Minkowski background.
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Perturbed Christoffel Symbols

— Plugging the new perturbed metric into the expression for the
Christoffel symbols:

1
Ffw = §gpa (augzla + 8Vg,ua - 809;”/)
1
= 51 = 1) 10u(n+ M)vo + 00+ W)uo — o (0 + h) ]

1
- §np0 (Ophvo + Ouhyo — Oshyw) + O(h?), (2)

— where we used 9y, =0, " =t — W s.t. g g, = 07, and
kept to 1% order in the perturbation Py -
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Perturbed Riemann Tensor

— From the previous lecture:

Riemann Tensor

R = (8uTS0 — 0,150 + TiaT, — T, ) 3)

I

— Red terms = 2"? order in huw, hence negligeble. What will be left:

1
R*,,., = 517”"’ [0y (Ovhop + Oshyp — Ophue) — Oy (Ouhop + Oshyup — Ophys)]

ouv

1 e}
- 577 P (81/8]0}1/”0' + auao-hyp - 8N8ph,jg - 8,/80—}1/“/]) 9 (4)

where we used [0, 0,] = 0.
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Perturbed Ricci Tensor & Scalar

— From the Riemann tensor we obtain the Ricci by contraciton of the
1%t and 3" indices:

1
R, = 9 (auaphpu + 81,8’%,)# —Dhyw — auavh) ) (5)
where O = 9,0, h = h",,.
— And taking the trace of the Ricci:
1
R'Y=R= 3 (8“8’%,)“ + 00 hyy, — ORF, — B”BMh)

= 940" hy,, — Oh, (6)

— We now have all the ingredients for the perturbed Einstein tensor.
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Perturbed Einstein Tensor

— From previous lecture:

1
G,uu = R,ul/ - _g,uI/R (7)

2

— Plugging into the above equation the expressions for the perturbed
Ricci tensor, scalar and metric:

1

G,LLI/ = R#U — 5(’[’]}“, + h#y)R
1

= Ruy — 577“1/R + O(hQ)

1
= 5[040"hgy + 0,0h s — Oy, = 3,0, h—

— N (078°hg, — OR)] + O(R?). (8)
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Perturbed Einstein Tensor 11

— We may introduce a new notation to simplify our expression:

— 1
hm/ = h,w/ - Enuuha (9)

— where hy,, is called the “trace-reversed” perturbation, which has
h=—h.

— Subs. into the perturbed Einstein tensor and neglecting terms of
O(h?):

4 1 _ _ _ —
Gl = 5 (0u0ph", + 0O, = Oy = Do,k ) . (10)
where Gﬁﬁ is the linearized Einstein tensor.
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Gauge Symmetries in GR




Degrees of Freedom

— Solving Einstein equations = Solving 10 ODEs (G, = 0) for 10
unknown functions g,,,7

— Bianchi identity: V#G, = 0 = -4 degrees of freedom.
— Problem(?): 10 unknown functions and 6 equations.
— PGC = g (2") — g;,,(z") = -4 degrees of freedom.

— 6 unknown func. & 6 equations!
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Coordinate Transf. x Diffeomorphisms

— Analogy:
o AF — AF 4+ VH¢ (EM gauge freedom)
e o' — z# (GR gauge freedom)

— GR’s gauge freedom is sometimes referred to as GR’s invariance
under diffeomorphisms [3].

— Coordinate transformations x Diffeomorphisms

at — 2 (11)
z — (2!)". (12)
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Coordinate Transf. x Diffeomorphisms

9(p) =¥~ (g(¥(p)))
g= @b_q'o goWw
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Coordinate Transf. x Diffeomorphisms

— This is known as a “passive” viewpoint on diffeomorphisms. 6]

— The metric perturbation under infinitesimal diffeomorphisms
transforms as:

Ry (%) = by, (2% + €%) = hyu (2%) + Lenp
h,w,(xa) + QV(#fl,)
h

,u,u(xa) + 28(#51/)7 (13)

— Another look at the analogy:
o AF — AF 4+ VH¢ (EM gauge freedom)
® hyy — hyw + 20,6, (GR gauge freedom)

14 /32



Perturbations in Minkowski




The Lorentz Gauge [

— The vector &* allows us to get rid of unphysical degrees of freedom.

— The trace-reversed hy,, transforms as [4]:

Ty (%) = T (2% 4 €)= T, (2%) + 20,6, — N0 Ear. (14)

— Calibrating &, we're able to set:

"Ry =0, (15)
— which is known as the Lorentz gauge.
— In this gauge:

Glin — (a#a,,ﬁpu + 0,00, — Oy, — nwa,aﬂ”) (16)

N | =
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Lorentz Gauge 11

— The linearized Einstein equation becomes:

Ohyw = —167T . (17)

— Solvable by method of Green’s functions.

— Looking at this equation far from sources:

DAy =0 (18)

— Which is the famous (homogeneous) wave equation.

— Metric perturbation = Gravitational Waves!!!
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Gravitational Waves |

— Ansatz:

Py = P et (19)

e P,, = polarization tensor,

e kH* — wave vector.

— With this Ansatz, the wave equation implies:

Kk, = 0 (20)

— GWs move at the speed of light!

— As Wald [6] states: GWs may be seen as massless spin-2 fields
propagating in flat background.
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Gravitational Waves 11

— With the same Ansatz, the Lorentz gauge implies:
K'Py, =0, (21)
— i.e., only transverse polarizations allowed (just as in EM).

— The wave equation is linear, hence the complete solution would be:
T = / Re (P (k)e 1 H20) @, (22)

— where we used k* = (w, k%), and x, = (—t,2;), i =1,2,3.
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TT-gauge I

— The Lorentz gauge conditions don’t completely determine &*.

— If:
Ry — E:W — BZV (23)

— For both E:W and EZV to represent the same perturbation Euv we
must have:

0&, =0 (24)

— Leftover gauge freedom = unphysical degrees of freedom.

— Once more, calibrating £# we may set:

h = hoi =0, (25)

— known as the Transverse-Traceless gauge
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TT-gauge I1

— Right away: h =0 = hyuw = EW

— Opening the Lorentz gauge expression:
a“huo =9 hoo + 9 hio = (26)
8'uhuj =9° hoj + 9’ hij =0 (27)
— Due to h = hy; = 0 we have:
°hgo =0 (28)
&'hij =0 (29)

— Eq.28 = hgg = static part (the time-dependent part is what
matters)

— In the Newtonian limit hgg — —2M /r (source), i.e. the Newtonian
potential (see [2])
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TT-gauge II1

— Far away from sources = r — 00, so we set hgg = 0.
— Hence the TT-gauge produces:
h=hu=0dh;=0 (30)

— Symmetries:

(1) Invarianceunder—eoordinatetransformations (vt)
(i) Berentzgauge (¢V)
(ili) FF-gauge (&)

— Now that we used up all our gauge freedom, what’s left?
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TT-gauge IV

— Back to the solution:
By = / P, (kM) @3k, (31)
— Note that the gauges impose restrictions on P,,:

e kP, =0 (Lorentz gauge)
e P!, =0 (Lorentz gauge)
e P,y =0 (TT-gauge)

— If the wave propagates in the z-direction, then:

k' = (w,w,0,0) (32)

— Obs: note k, = (—w,w,0,0) = ktk, = —w? + w? = 0, as expected.
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TT-gauge V

— Hence, k*P,, = 0 (given P,y = 0):

0 0 0 0
0 Piu P2 P3|
(w w 0 0) 0 Py Py Pyl = 0 (33)
0 P13 Py Ps3
— Which gives us:
Py =Po=P3=0 (34)
— Thus:
00 O 0
0 0 O 0
ILV 10 0 Py P ’ (35)
0 0 Py —Pop

— where we used P“# =0.
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TT-gauge VI

— Relabeling Pog = p1 and Pos = px:

0 O 0
Pj=10 pyr bpx , (36)
0 px —p+

ij
— Such that, plugging it back into the equation for h;; and taking the
real part of e*"%x_the solution for each frequency w of the
superposition:

hij(z,t) = Pijcos[w(t — x)]. (37)

— For details and a formal analysis of the effect of these GWs on
particles, see[4, 3].

— Here comes the intuiton...
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Effect of GWs (intuiton)

— Minkowski spacetime before perturbation (in cartesian coord.):

ds® = —dt* + da* + dy? + dz*. (38)

— Since g, = Nuv + hyw, turning the perturbation on:
ds? = —dt* +da® + (1 + A dy? + (1 — Ay ) d2? + 20 dydz,  (39)

— where Ay = picosfw(t — x)] and Ay = pxcos|w(t — x)]

— GW passes by = distances between points in spacetime change.
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Effects of GWs (intuition) II

— Set a system of particles in the yz-plane arranged in a circle
centered at x = m/2w:

B =pecos[o (1= Z)] B =pucos[u (1= 2]

w
= pysin (wt) = pxsin (wt)

— As time progresses and the GW passes through x = 5

t:O: A+/><:0
s
t:%: A-&-/>< = DP+/x
7('
t:a: A+/><:0
37
tzﬂ: A+/><:_p+/><
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“Plus” Polarization
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“Cross” Polarization

_ 7 __ 3r
t=1 t=3z
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Next Time...

Tomorrow: Perturbations in Curved Spacetime!!!

Thank you!
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