Black Hole Perturbation Theory: An Introduction

Vitor Fernandes Guimarães, BSc.

I São Paulo School on Gravitational Physics

July 17, 2024

[Perturbations in Minkowski](#page-14-0)

[GR in the Weak Field limit](#page-2-0)

 \rightarrow Basic assumption:

Weak Field condition

$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1 \tag{1}
$$

 \rightarrow Two possible interpretations [\[3,](#page-30-0) [5,](#page-30-1) [1\]](#page-30-2):

- Flat spacetime $+$ small perturbation
- $(0, 2)$ -tensor field + Minkowski background.

 \rightarrow Plugging the new perturbed metric into the expression for the Christoffel symbols:

$$
\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right)
$$

\n
$$
= \frac{1}{2} (\eta - h)^{\rho\sigma} \left[\partial_{\mu} (\eta + h)_{\nu\sigma} + \partial_{\nu} (\eta + h)_{\mu\sigma} - \partial_{\sigma} (\eta + h)_{\mu\nu} \right]
$$

\n
$$
= \frac{1}{2} \eta^{\rho\sigma} \left(\partial_{\mu} h_{\nu\sigma} + \partial_{\nu} h_{\mu\sigma} - \partial_{\sigma} h_{\mu\nu} \right) + O(h^2), \tag{2}
$$

→ where we used $\partial_{\mu} \eta_{\nu\gamma} = 0$, $g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$, s.t. $g^{\mu\nu} g_{\mu\gamma} = \delta^{\nu}_{\gamma}$ and kept to 1^{st} order in the perturbation $h_{\mu\nu}$.

Perturbed Riemann Tensor

\rightarrow From the previous lecture:

Riemann Tensor

$$
R^{\alpha}{}_{\sigma\mu\nu} \equiv \left(\partial_{\mu}\Gamma^{\alpha}_{\nu\sigma} - \partial_{\nu}\Gamma^{\alpha}_{\mu\sigma} + \Gamma^{\alpha}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right) \tag{3}
$$

 \rightarrow Red terms = 2^{nd} order in $h_{\mu\nu}$, hence negligeble. What will be left:

$$
R^{\alpha}_{\ \sigma\mu\nu} = \frac{1}{2} \eta^{\alpha\rho} \left[\partial_{\mu} \left(\partial_{\nu} h_{\sigma\rho} + \partial_{\sigma} h_{\nu\rho} - \partial_{\rho} h_{\nu\sigma} \right) - \partial_{\nu} \left(\partial_{\mu} h_{\sigma\rho} + \partial_{\sigma} h_{\mu\rho} - \partial_{\rho} h_{\mu\sigma} \right) \right]
$$

$$
= \frac{1}{2} \eta^{\alpha\rho} \left(\partial_{\nu} \partial_{\rho} h_{\mu\sigma} + \partial_{\mu} \partial_{\sigma} h_{\nu\rho} - \partial_{\mu} \partial_{\rho} h_{\nu\sigma} - \partial_{\nu} \partial_{\sigma} h_{\mu\rho} \right), \tag{4}
$$

where we used $[\partial_{\mu}, \partial_{\nu}] = 0$.

 \rightarrow From the Riemann tensor we obtain the Ricci by contraciton of the 1^{st} and 3^{rd} indices:

$$
R_{\mu\nu} = \frac{1}{2} \left(\partial_{\mu} \partial^{\rho} h_{\rho\nu} + \partial_{\nu} \partial^{\rho} h_{\rho\mu} - \Box h_{\mu\nu} - \partial_{\mu} \partial_{\nu} h \right), \tag{5}
$$

where $\Box = \partial_{\mu} \partial^{\mu}$, $h = h^{\mu}{}_{\mu}$.

 \rightarrow And taking the trace of the Ricci:

$$
R^{\mu}_{\ \mu} = R = \frac{1}{2} \left(\partial^{\mu} \partial^{\rho} h_{\rho \mu} + \partial^{\mu} \partial^{\rho} h_{\rho \mu} - \Box h^{\mu}_{\ \mu} - \partial^{\mu} \partial_{\mu} h \right)
$$

$$
= \partial^{\mu} \partial^{\nu} h_{\mu \nu} - \Box h, \tag{6}
$$

 \rightarrow We now have all the ingredients for the perturbed Einstein tensor.

Perturbed Einstein Tensor

 \rightarrow From previous lecture:

Einstein Tensor

$$
G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \tag{7}
$$

 \rightarrow Plugging into the above equation the expressions for the perturbed Ricci tensor, scalar and metric:

$$
G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} (\eta_{\mu\nu} + h_{\mu\nu}) R
$$

= $R_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} R + O(h^2)$
= $\frac{1}{2} [\partial_{\mu} \partial^{\rho} h_{\rho\nu} + \partial_{\nu} \partial^{\rho} h_{\rho\mu} - \Box h_{\mu\nu} - \partial_{\mu} \partial_{\nu} h -$
 $- \eta_{\mu\nu} (\partial^{\sigma} \partial^{\rho} h_{\sigma\rho} - \Box h) + O(h^2).$ (8)

 \rightarrow We may introduce a new notation to simplify our expression:

$$
h_{\mu\nu} = \overline{h}_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \overline{h},\tag{9}
$$

 \rightarrow where $h_{\mu\nu}$ is called the "trace-reversed" perturbation, which has $h = -h$.

 \rightarrow Subs. into the perturbed Einstein tensor and neglecting terms of $\mathcal{O}(h^2)$:

$$
G_{\mu\nu}^{lin} = \frac{1}{2} \left(\partial_{\mu} \partial_{\rho} \overline{h}^{\rho}_{ \nu} + \partial_{\nu} \partial_{\rho} \overline{h}^{\rho}_{ \mu} - \Box \overline{h}_{\mu\nu} - \eta_{\mu\nu} \partial_{\sigma} \partial_{\rho} \overline{h}^{\sigma\rho} \right), \qquad (10)
$$

where $G_{\mu\nu}^{lin}$ is the *linearized* Einstein tensor.

[Gauge Symmetries in GR](#page-9-0)

 \rightarrow Solving Einstein equations \Rightarrow Solving 10 ODEs ($G_{\mu\nu} = 0$) for 10 unknown functions $g_{\mu\nu}$?

 \rightarrow Bianchi identity: $\nabla^{\mu}G_{\mu\nu} = 0 \Rightarrow -4$ degrees of freedom.

 \rightarrow Problem(?): 10 unknown functions and 6 equations.

 \rightarrow PGC \Rightarrow $g_{\mu\nu}(x^{\mu}) \rightarrow g'_{\mu\nu}(x^{\mu\prime}) \Rightarrow$ -4 degrees of freedom.

 \rightarrow 6 unknown func. & 6 equations!

 \rightarrow Analogy:

- $A^{\mu} \rightarrow A^{\mu} + \nabla^{\mu} \phi$ (EM gauge freedom)
- $x^{\mu} \rightarrow x^{\mu\prime}$ (GR gauge freedom)

 \rightarrow GR's gauge freedom is sometimes referred to as GR's invariance under diffeomorphisms [\[3\]](#page-30-0).

 \rightarrow Coordinate transformations x Diffeomorphisms

$$
x^{\mu} \to x^{\nu'} \tag{11}
$$

$$
x^{\mu} \to (x')^{\nu}.
$$
 (12)

Coordinate Transf. x Diffeomorphisms

 $g(p) = \psi^{-1}(g(\Psi(p)))$ $g=\psi^{-1}\circ g\circ \Psi$

 \rightarrow This is known as a "passive" viewpoint on diffeomorphisms.[\[6\]](#page-31-0)

 \rightarrow The metric perturbation under infinitesimal diffeomorphisms transforms as:

$$
h_{\mu\nu}(x^{\alpha}) \to h'_{\mu\nu}(x^{\alpha} + \xi^{\alpha}) = h_{\mu\nu}(x^{\alpha}) + \mathcal{L}_{\xi}\eta_{\mu\nu}
$$

$$
= h_{\mu\nu}(x^{\alpha}) + 2\nabla_{(\mu}\xi_{\nu)}
$$

$$
= h_{\mu\nu}(x^{\alpha}) + 2\partial_{(\mu}\xi_{\nu)}, \tag{13}
$$

 \rightarrow Another look at the analogy:

- $A^{\mu} \rightarrow A^{\mu} + \nabla^{\mu} \phi$ (EM gauge freedom)
- $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)}$ (GR gauge freedom)

[Perturbations in Minkowski](#page-14-0)

The Lorentz Gauge I

 \rightarrow The vector ξ^{μ} allows us to get rid of unphysical degrees of freedom.

 \rightarrow The trace-reversed $\bar{h}_{\mu\nu}$ transforms as [\[4\]](#page-30-3):

$$
\overline{h}_{\mu\nu}(x^{\alpha}) \to \overline{h}'_{\mu\nu}(x^{\alpha} + \xi^{\alpha}) = \overline{h}_{\mu\nu}(x^{\alpha}) + 2\partial_{(\mu}\xi_{\nu)} - \eta_{\mu\nu}\partial^{\alpha}\xi_{\alpha}.
$$
 (14)

 \rightarrow Calibrating ξ_{μ} we're able to set:

$$
\partial^{\mu}\overline{h}_{\mu\nu} = 0,\tag{15}
$$

 \rightarrow which is known as the **Lorentz gauge**.

 \rightarrow In this gauge:

$$
G_{\mu\nu}^{lin} = \frac{1}{2} \left(\partial_{\mu} \partial_{\rho} \overline{h}^{\rho}_{\ \nu} + \partial_{\nu} \partial_{\rho} \overline{h}^{\rho}_{\ \mu} - \Box \overline{h}_{\mu\nu} - \eta_{\mu\nu} \partial_{\sigma} \partial_{\rho} \overline{h}^{\rho\sigma} \right) \tag{16}
$$

16 / 32

Lorentz Gauge II

 \rightarrow The linearized Einstein equation becomes:

$$
\Box \overline{h}_{\mu\nu} = -16\pi T_{\mu\nu}.\tag{17}
$$

 \rightarrow Solvable by method of Green's functions.

 \rightarrow Looking at this equation far from sources:

$$
\Box \overline{h}_{\mu\nu} = 0 \tag{18}
$$

- \rightarrow Which is the famous (homogeneous) wave equation.
- \rightarrow Metric perturbation \Rightarrow Gravitational Waves!!!

Gravitational Waves I

 \rightarrow Ansatz:

$$
\overline{h}_{\mu\nu} = \overline{P}_{\mu\nu} e^{ik_{\sigma}x^{\sigma}} \tag{19}
$$

- $\overline{P}_{\mu\nu} =$ polarization tensor,
- k^{μ} = wave vector.

 \rightarrow With this Ansatz, the wave equation implies:

$$
k^{\mu}k_{\mu} = 0 \tag{20}
$$

\rightarrow GWs move at the speed of light!

 \rightarrow As Wald [\[6\]](#page-31-0) states: GWs may be seen as massless spin-2 fields propagating in flat background.

 \rightarrow With the same Ansatz, the Lorentz gauge implies:

$$
k^{\mu}\overline{P}_{\mu\nu} = 0,\tag{21}
$$

 \rightarrow i.e., only transverse polarizations allowed (just as in EM).

 \rightarrow The wave equation is linear, hence the complete solution would be:

$$
\overline{h}_{\mu\nu} = \int \mathfrak{Re}\left(\overline{P}_{\mu\nu}(k^{\mu})e^{i(-\omega t + k^i x_i)}\right) d^3k,\tag{22}
$$

 \rightarrow where we used $k^{\mu} \equiv (\omega, k^{i}),$ and $x_{\mu} = (-t, x_{i}), i = 1, 2, 3$.

 \rightarrow The Lorentz gauge conditions don't completely determine ξ^{μ} . \rightarrow If:

$$
\overline{h}_{\mu\nu} \to \overline{h}'_{\mu\nu} \to \overline{h}''_{\mu\nu} \tag{23}
$$

 \to For both $\overline{h}'_{\mu\nu}$ and $\overline{h}''_{\mu\nu}$ to represent the same perturbation $\overline{h}_{\mu\nu}$ we must have:

$$
\Box \xi_{\mu} = 0 \tag{24}
$$

 \rightarrow Leftover gauge freedom \Rightarrow unphysical degrees of freedom.

 \rightarrow Once more, calibrating ξ^{μ} we may set:

$$
\overline{h} = \overline{h}_{0i} = 0,\t\t(25)
$$

 \rightarrow known as the **Transverse-Traceless gauge**

TT-gauge II

$$
\rightarrow
$$
 Right away: $\overline{h} = 0 \Rightarrow h_{\mu\nu} = \overline{h}_{\mu\nu}$

 \rightarrow Opening the Lorentz gauge expression:

$$
\partial^{\mu}h_{\mu 0} = \partial^0 h_{00} + \partial^i h_{i0} = 0
$$
\n(26)

$$
\partial^{\mu}h_{\mu j} = \partial^{0}h_{0j} + \partial^{i}h_{ij} = 0
$$
\n(27)

 \rightarrow Due to $h = h_{0i} = 0$ we have:

$$
\partial^0 h_{00} = 0 \tag{28}
$$

$$
\partial^i h_{ij} = 0 \tag{29}
$$

 \rightarrow Eq[.28](#page-20-0) \Rightarrow h_{00} = static part (the time-dependent part is what matters)

 \rightarrow In the Newtonian limit $h_{00} \rightarrow -2M/r$ (source), i.e. the Newtonian potential (see [\[2\]](#page-30-4))

 \rightarrow Far away from sources \Rightarrow $r \rightarrow \infty$, so we set $h_{00} = 0$.

 \rightarrow Hence the TT-gauge produces:

$$
h = h_{\mu 0} = \partial^j h_{ij} = 0 \tag{30}
$$

 \rightarrow Symmetries:

- (i) Invariance under coordinate transformations (x^{μ})
- (ii) Lorentz gauge (ξ^{μ})

(iii) TT-gauge $({\xi}^{\mu})$

 \rightarrow Now that we used up all our gauge freedom, what's left?

TT-gauge IV

 \rightarrow Back to the solution:

$$
h_{\mu\nu} = \int P_{\mu\nu}(k^{\mu})e^{ik_{\sigma}x^{\sigma}}d^3k,\tag{31}
$$

 \rightarrow Note that the gauges impose restrictions on $P_{\mu\nu}$:

- $k^{\mu}P_{\mu\nu} = 0$ (Lorentz gauge)
- $P^{\mu}_{\mu} = 0$ (Lorentz gauge)
- $P_{\mu 0} = 0$ (TT-gauge)

 \rightarrow If the wave propagates in the x-direction, then:

$$
k^{\mu} = (\omega, \omega, 0, 0) \tag{32}
$$

 \rightarrow Obs: note $k_{\mu} = (-\omega, \omega, 0, 0) \Rightarrow k^{\mu}k_{\mu} = -\omega^2 + \omega^2 = 0$, as expected.

TT-gauge V

$$
\rightarrow
$$
 Hence, $k^{\mu}P_{\mu\nu} = 0$ (given $P_{\mu 0} = 0$):

$$
\begin{pmatrix}\n\omega & \omega & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\n0 & 0 & 0 & 0 \\
0 & P_{11} & P_{12} & P_{13} \\
0 & P_{12} & P_{22} & P_{23} \\
0 & P_{13} & P_{23} & P_{33}\n\end{pmatrix} = 0
$$
\n(33)

 \rightarrow Which gives us:

$$
P_{11} = P_{12} = P_{13} = 0 \tag{34}
$$

 \rightarrow Thus:

$$
P_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & P_{22} & P_{23} \\ 0 & 0 & P_{23} & -P_{22} \end{pmatrix}_{\mu\nu}, \qquad (35)
$$

 \rightarrow where we used $P^{\mu}_{\mu} = 0$.

TT-gauge VI

 \rightarrow Relabeling $P_{22} = p_+$ and $P_{23} = p_{\times}$:

$$
P_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & p_+ & p_\times \\ 0 & p_\times & -p_+ \end{pmatrix}_{ij}, \qquad (36)
$$

 \rightarrow Such that, plugging it back into the equation for h_{ij} and taking the real part of $e^{ik^{\mu}x_{\mu}}$, the solution for each frequency ω of the superposition:

$$
h_{ij}(x,t) = P_{ij} \cos[\omega(t-x)]. \tag{37}
$$

 \rightarrow For details and a formal analysis of the effect of these GWs on particles, see[\[4,](#page-30-3) [3\]](#page-30-0).

 \rightarrow Here comes the intuiton...

 \rightarrow Minkowski spacetime before perturbation (in cartesian coord.):

$$
ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.
$$
 (38)

 \rightarrow Since $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, turning the perturbation on:

$$
ds^{2} = -dt^{2} + dx^{2} + (1 + \Delta_{+}) dy^{2} + (1 - \Delta_{+}) dz^{2} + 2\Delta_{\times} dy dz, \quad (39)
$$

$$
\rightarrow
$$
 where $\Delta_+ = p_+ cos[\omega(t - x)]$ and $\Delta_{\times} = p_{\times} cos[\omega(t - x)]$

 \rightarrow GW passes by \Rightarrow distances between points in spacetime change.

Effects of GWs (intuition) II

 \rightarrow Set a system of particles in the *yz*-plane arranged in a circle centered at $x = \pi/2\omega$:

$$
\Delta_{+} = p_{+} \cos \left[\omega \left(t - \frac{\pi}{2\omega} \right) \right] \qquad \Delta_{\times} = p_{\times} \cos \left[\omega \left(t - \frac{\pi}{2\omega} \right) \right]
$$

$$
= p_{+} \sin \left(\omega t \right) \qquad \qquad = p_{\times} \sin \left(\omega t \right)
$$

 \rightarrow As time progresses and the GW passes through $x = \frac{\pi}{2a}$ $\frac{\pi}{2\omega}$:

$$
t = 0: \quad \Delta_{+/\times} = 0
$$

\n
$$
t = \frac{\pi}{2\omega}: \quad \Delta_{+/\times} = p_{+/\times}
$$

\n
$$
t = \frac{\pi}{\omega}: \quad \Delta_{+/\times} = 0
$$

\n
$$
t = \frac{3\pi}{2\omega}: \quad \Delta_{+/\times} = -p_{+/\times}
$$

"Plus" Polarization

"Cross" Polarization

Tomorrow: Perturbations in Curved Spacetime!!!

Thank you!

References I

- [1] Emanuele Berti. "Black Hole Perturbation Theory". In: Summer School on Gravitational-Wave Astronomy, International Center for Theoretical Sciences, Bangalore (2016). URL: <https://www.icts.res.in/event/page/3071>.
- [2] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.
- [3] Valeria Ferrari, Leonardo Gualtieri, and Paolo Pani. General relativity and its applications: black holes, compact stars and gravitational waves. CRC press, 2020.
- [4] Michele Maggiore. Gravitational waves: Volume 1: Theory and experiments. OUP Oxford, 2007.
- [5] Alexander Maloney. "General Relativity Course Notes". In: Physics 514: General Relativity, McGill University, Montreal, Canada (2011) . URL: <https://www.physics.mcgill.ca/~maloney/514/>.

[6] Robert M Wald. General relativity. University of Chicago press, 2010.