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GR in the Weak Field limit



The Weak Field Limit

→ Basic assumption:

Weak Field condition

gµν = ηµν + hµν , |hµν | ≪ 1 (1)

→ Two possible interpretations [3, 5, 1]:
• Flat spacetime + small perturbation
• (0, 2)-tensor field + Minkowski background.
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Perturbed Christoffel Symbols

→ Plugging the new perturbed metric into the expression for the
Christoffel symbols:

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν)

=
1

2
(η − h)ρσ [∂µ(η + h)νσ + ∂ν(η + h)µσ − ∂σ(η + h)µν ]

=
1

2
ηρσ (∂µhνσ + ∂νhµσ − ∂σhµν) + O(h2), (2)

→ where we used ∂µηνγ = 0, gµν = ηµν − hµν , s.t. gµνgµγ = δνγ and
kept to 1st order in the perturbation hµν .
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Perturbed Riemann Tensor

→ From the previous lecture:

Riemann Tensor

Rα
σµν ≡

(
∂µΓ

α
νσ − ∂νΓ

α
µσ + Γα

µλΓ
λ
νσ − Γα

νλΓ
λ
µσ

)
(3)

→ Red terms = 2nd order in hµν , hence negligeble. What will be left:

Rα
σµν =

1

2
ηαρ [∂µ (∂νhσρ + ∂σhνρ − ∂ρhνσ)− ∂ν (∂µhσρ + ∂σhµρ − ∂ρhµσ)]

=
1

2
ηαρ (∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) , (4)

where we used [∂µ, ∂ν ] = 0.

6 / 32



Perturbed Ricci Tensor & Scalar

→ From the Riemann tensor we obtain the Ricci by contraciton of the
1st and 3rd indices:

Rµν =
1

2
(∂µ∂

ρhρν + ∂ν∂
ρhρµ −□hµν − ∂µ∂νh) , (5)

where □ = ∂µ∂
µ, h = hµµ.

→ And taking the trace of the Ricci:

Rµ
µ = R =

1

2

(
∂µ∂ρhρµ + ∂µ∂ρhρµ −□hµµ − ∂µ∂µh

)
= ∂µ∂νhµν −□h, (6)

→ We now have all the ingredients for the perturbed Einstein tensor.
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Perturbed Einstein Tensor

→ From previous lecture:

Einstein Tensor

Gµν ≡ Rµν −
1

2
gµνR (7)

→ Plugging into the above equation the expressions for the perturbed
Ricci tensor, scalar and metric:

Gµν = Rµν −
1

2
(ηµν + hµν)R

= Rµν −
1

2
ηµνR+ O(h2)

=
1

2
[∂µ∂

ρhρν + ∂ν∂
ρhρµ −□hµν − ∂µ∂νh−

− ηµν(∂
σ∂ρhσρ −□h)] + O(h2). (8)

8 / 32



Perturbed Einstein Tensor II

→ We may introduce a new notation to simplify our expression:

hµν = hµν −
1

2
ηµνh, (9)

→ where hµν is called the “trace-reversed” perturbation, which has
h = −h.

→ Subs. into the perturbed Einstein tensor and neglecting terms of
O(h2):

Glin
µν =

1

2

(
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ −□hµν − ηµν∂σ∂ρh

σρ
)
, (10)

where Glin
µν is the linearized Einstein tensor.
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Gauge Symmetries in GR



Degrees of Freedom

→ Solving Einstein equations ⇒ Solving 10 ODEs (Gµν = 0) for 10
unknown functions gµν?

→ Bianchi identity: ∇µGµν = 0 ⇒ -4 degrees of freedom.

→ Problem(?): 10 unknown functions and 6 equations.

→ PGC ⇒ gµν(x
µ) → g′µν(x

µ′) ⇒ -4 degrees of freedom.

→ 6 unknown func. & 6 equations!
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Coordinate Transf. x Diffeomorphisms

→ Analogy:
• Aµ → Aµ +∇µϕ (EM gauge freedom)
• xµ → xµ′ (GR gauge freedom)

→ GR’s gauge freedom is sometimes referred to as GR’s invariance
under diffeomorphisms [3].

→ Coordinate transformations x Diffeomorphisms

xµ → xν
′

(11)
xµ → (x′)ν . (12)
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Coordinate Transf. x Diffeomorphisms

M

Rn

p

q

Ψ

f

g

g

xµ

xν
′

(R′)n

x̃ν
′

ψ

ϕ

g(p) = ψ−1(g(Ψ(p)))

g = ψ−1 ◦ g ◦Ψ
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Coordinate Transf. x Diffeomorphisms

→ This is known as a “passive” viewpoint on diffeomorphisms.[6]

→ The metric perturbation under infinitesimal diffeomorphisms
transforms as:

hµν(x
α) → h′µν(x

α + ξα) = hµν(x
α) + Lξηµν

= hµν(x
α) + 2∇(µξν)

= hµν(x
α) + 2∂(µξν), (13)

→ Another look at the analogy:
• Aµ → Aµ +∇µϕ (EM gauge freedom)
• hµν → hµν + 2∂(µξν) (GR gauge freedom)
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Perturbations in Minkowski



The Lorentz Gauge I

→ The vector ξµ allows us to get rid of unphysical degrees of freedom.

→ The trace-reversed hµν transforms as [4]:

hµν(x
α) → h

′
µν(x

α + ξα) = hµν(x
α) + 2∂(µξν) − ηµν∂

αξα. (14)

→ Calibrating ξµ we’re able to set:

∂µhµν = 0, (15)

→ which is known as the Lorentz gauge.

→ In this gauge:

Glin
µν =

1

2

(
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ −□hµν − ηµν∂σ∂ρh

ρσ
)

(16)
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Lorentz Gauge II

→ The linearized Einstein equation becomes:

□hµν = −16πTµν . (17)

→ Solvable by method of Green’s functions.

→ Looking at this equation far from sources:

□hµν = 0 (18)

→ Which is the famous (homogeneous) wave equation.

→ Metric perturbation ⇒ Gravitational Waves!!!
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Gravitational Waves I

→ Ansatz:
hµν = Pµνe

ikσxσ
(19)

• Pµν = polarization tensor,
• kµ = wave vector.

→ With this Ansatz, the wave equation implies:

kµkµ = 0 (20)

→ GWs move at the speed of light!

→ As Wald [6] states: GWs may be seen as massless spin-2 fields
propagating in flat background.
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Gravitational Waves II

→ With the same Ansatz, the Lorentz gauge implies:

kµPµν = 0, (21)

→ i.e., only transverse polarizations allowed (just as in EM).

→ The wave equation is linear, hence the complete solution would be:

hµν =

∫
Re

(
Pµν(k

µ)ei(−ωt+kixi)
)
d3k, (22)

→ where we used kµ ≡ (ω, ki), and xµ = (−t, xi), i = 1, 2, 3.
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TT-gauge I

→ The Lorentz gauge conditions don’t completely determine ξµ.

→ If:
hµν → h

′
µν → h

′′
µν (23)

→ For both h′µν and h′′µν to represent the same perturbation hµν we
must have:

□ξµ = 0 (24)

→ Leftover gauge freedom ⇒ unphysical degrees of freedom.

→ Once more, calibrating ξµ we may set:

h = h0i = 0, (25)

→ known as the Transverse-Traceless gauge
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TT-gauge II

→ Right away: h = 0 ⇒ hµν = hµν

→ Opening the Lorentz gauge expression:

∂µhµ0 = ∂0h00 + ∂ihi0 = 0 (26)

∂µhµj = ∂0h0j + ∂ihij = 0 (27)

→ Due to h = h0i = 0 we have:

∂0h00 = 0 (28)

∂ihij = 0 (29)

→ Eq.28 ⇒ h00 = static part (the time-dependent part is what
matters)

→ In the Newtonian limit h00 → −2M/r (source), i.e. the Newtonian
potential (see [2])
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TT-gauge III

→ Far away from sources ⇒ r → ∞, so we set h00 = 0.

→ Hence the TT-gauge produces:

h = hµ0 = ∂jhij = 0 (30)

→ Symmetries:
(i) Invariance under coordinate transformations (xµ)
(ii) Lorentz gauge (ξµ)
(iii) TT-gauge (ξµ)

→ Now that we used up all our gauge freedom, what’s left?
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TT-gauge IV

→ Back to the solution:

hµν =

∫
Pµν(k

µ)eikσx
σ
d3k, (31)

→ Note that the gauges impose restrictions on Pµν :

• kµPµν = 0 (Lorentz gauge)
• Pµ

µ = 0 (Lorentz gauge)
• Pµ0 = 0 (TT-gauge)

→ If the wave propagates in the x-direction, then:

kµ = (ω, ω, 0, 0) (32)

→ Obs: note kµ = (−ω, ω, 0, 0) ⇒ kµkµ = −ω2 + ω2 = 0, as expected.
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TT-gauge V

→ Hence, kµPµν = 0 (given Pµ0 = 0):

(
ω ω 0 0

)
0 0 0 0
0 P11 P12 P13

0 P12 P22 P23

0 P13 P23 P33

 = 0 (33)

→ Which gives us:
P11 = P12 = P13 = 0 (34)

→ Thus:

Pµν =


0 0 0 0
0 0 0 0
0 0 P22 P23

0 0 P23 −P22


µν

, (35)

→ where we used Pµ
µ = 0.
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TT-gauge VI

→ Relabeling P22 = p+ and P23 = p×:

Pij =

0 0 0
0 p+ p×
0 p× −p+


ij

, (36)

→ Such that, plugging it back into the equation for hij and taking the
real part of eikµxµ , the solution for each frequency ω of the
superposition:

hij(x, t) = Pijcos[ω(t− x)]. (37)

→ For details and a formal analysis of the effect of these GWs on
particles, see[4, 3].

→ Here comes the intuiton...
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Effect of GWs (intuiton)

→ Minkowski spacetime before perturbation (in cartesian coord.):

ds2 = −dt2 + dx2 + dy2 + dz2. (38)

→ Since gµν = ηµν + hµν , turning the perturbation on:

ds2 = −dt2 + dx2 + (1 +∆+) dy
2 + (1−∆+) dz

2 + 2∆×dydz, (39)

→ where ∆+ = p+cos[ω(t− x)] and ∆× = p×cos[ω(t− x)]

→ GW passes by ⇒ distances between points in spacetime change.
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Effects of GWs (intuition) II

→ Set a system of particles in the yz-plane arranged in a circle
centered at x = π/2ω:

∆+ = p+cos
[
ω
(
t− π

2ω

)]
∆× = p×cos

[
ω
(
t− π

2ω

)]
= p+sin (ωt) = p×sin (ωt)

→ As time progresses and the GW passes through x = π
2ω :

t = 0 : ∆+/× = 0

t =
π

2ω
: ∆+/× = p+/×

t =
π

ω
: ∆+/× = 0

t =
3π

2ω
: ∆+/× = −p+/×
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“Plus” Polarization
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“Cross” Polarization
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Next Time...

Tomorrow: Perturbations in Curved Spacetime!!!

Thank you!
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