Black Hole Perturbation Theory: An Introduction

Vitor Fernandes Guimarães, BSc.

I São Paulo School on Gravitational Physics

July 22, 2024

- [Regge-Wheeler](#page-24-0)
- [Zerilli](#page-42-0)

Recall

- \rightarrow The spherical tensors and its orthogonality relations [\[2\]](#page-52-0):
	- Scalar \rightarrow Y^{lm} :

$$
\langle Y^{lm}, Y^{l'm'} \rangle = \delta^{ll'} \delta^{mm'} \tag{1}
$$

• Vector $\rightarrow Y_a^{lm}$ (even), S_a^{lm} (polar):

$$
\gamma^{ab}\langle S_a^{lm}, S_b^{l'm'} \rangle = l(l+1)\delta^{ll'}\delta^{mm'}
$$

$$
\gamma^{ab}\langle Y_a^{lm}, Y_b^{l'm'} \rangle = l(l+1)\delta^{ll'}\delta^{mm'}
$$

$$
\gamma^{ab}\langle Y_a^{lm}, S_b^{l'm'} \rangle = 0
$$
 (2)

• Tensor $\rightarrow Z_{ab}^{lm}$ (even), S_{ab}^{lm} (polar):

$$
\gamma^{ac}\gamma^{bd}\langle S_{ac}^{lm}, S_{bd}^{l'm'}\rangle = l(l+1)(l+2)\delta^{ll'}\delta^{mm'}
$$

$$
\gamma^{ac}\gamma^{bd}\langle Z_{ac}^{lm}, Z_{bd}^{l'm'}\rangle = l(l+1)(l+2)\delta^{ll'}\delta^{mm'}
$$

$$
\gamma^{ac}\gamma^{bd}\langle Z_{ac}^{lm}, S_{bd}^{l'm'}\rangle = 0
$$
(3)

Looking at it another way...

 \rightarrow The spherical tensors and its orthogonality relations (for fixed l, m):

Looking at it another way...

- \rightarrow The spherical tensors and its orthogonality relations (for fixed l, m):
	- Vector $\rightarrow e_a^{e,lm}, e_a^{o,lm}$:

$$
\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = l(l+1) \n\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = l(l+1) \n\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = 0
$$
\n(4)

Looking at it another way...

- \rightarrow The spherical tensors and its orthogonality relations (for fixed l, m):
	- Vector $\rightarrow e_a^{e,lm}, e_a^{o,lm}$:

$$
\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = l(l+1) \n\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = l(l+1) \n\gamma^{ab} e_a^{\rho,lm} e_b^{\rho,lm} = 0
$$
\n(4)

• Tensor
$$
\rightarrow e_{ab}^{e,lm}, e_{ab}^{o,lm}
$$
:

$$
\gamma^{ac}\gamma^{bd}e_{ac}^{\circ,lm}e_{bd}^{\circ,lm} = l(l+1)(l+2)
$$

\n
$$
\gamma^{ac}\gamma^{bd}e_{ac}^{\circ,lm}e_{bd}^{\circ,lm} = l(l+1)(l+2)
$$

\n
$$
\gamma^{ac}\gamma^{bd}e_{ac}^{\circ,lm}e_{bd}^{\circ,lm} = 0
$$
\n(5)

 \rightarrow The Harmonic decomposition (for fixed l, m):

 \rightarrow The Harmonic decomposition (for fixed l, m):

$$
h_{\mu\nu} = \begin{pmatrix} h_{AB} & h_{Aa} \\ h_{aA} & h_{ab} \end{pmatrix}_{\mu\nu}, \tag{6}
$$

 \rightarrow The Harmonic decomposition (for fixed l, m):

$$
h_{\mu\nu} = \begin{pmatrix} h_{AB} & h_{Aa} \\ h_{aA} & h_{ab} \end{pmatrix}_{\mu\nu}, \tag{6}
$$

 \rightarrow where:

$$
h_{AB} = h_{AB}^{lm} Y^{lm} \tag{7}
$$

$$
h_{Aa} = h_A^{e,lm} e_a^{e,lm} + h_A^{o,lm} e_a^{o,lm}
$$
\n(8)

$$
h_{ab} = r^2 \left(K^{lm} \gamma_{ab} Y^{lm} + G^{lm} e^{e, lm}_{ab} + 2h^{lm} e^{o, lm}_{ab} \right)
$$
 (9)

 \rightarrow The Harmonic decomposition (for fixed l, m):

$$
h_{\mu\nu} = \begin{pmatrix} h_{AB} & h_{Aa} \\ h_{aA} & h_{ab} \end{pmatrix}_{\mu\nu}, \tag{6}
$$

 \rightarrow where:

$$
h_{AB} = h_{AB}^{lm} Y^{lm} \tag{7}
$$

$$
h_{Aa} = h_A^{e,lm} e_a^{e,lm} + h_A^{o,lm} e_a^{o,lm}
$$
\n(8)

$$
h_{ab} = r^2 \left(K^{lm} \gamma_{ab} Y^{lm} + G^{lm} e^{e, lm}_{ab} + 2h^{lm} e^{o, lm}_{ab} \right)
$$
 (9)

 \rightarrow Parity decomposition:

$$
h_{\mu\nu}(t,r,\theta,\phi) = h^e_{\mu\nu}(t,r,\theta,\phi) + h^o_{\mu\nu}(t,r,\theta,\phi),\tag{10}
$$

 \rightarrow The Harmonic decomposition (for fixed l, m):

$$
h_{\mu\nu} = \begin{pmatrix} h_{AB} & h_{Aa} \\ h_{aA} & h_{ab} \end{pmatrix}_{\mu\nu}, \tag{6}
$$

 \rightarrow where:

$$
h_{AB} = h_{AB}^{lm} Y^{lm} \tag{7}
$$

$$
h_{Aa} = h_A^{e,lm} e_a^{e,lm} + h_A^{o,lm} e_a^{o,lm}
$$
\n(8)

$$
h_{ab} = r^2 \left(K^{lm} \gamma_{ab} Y^{lm} + G^{lm} e^{e, lm}_{ab} + 2h^{lm} e^{o, lm}_{ab} \right)
$$
 (9)

 \rightarrow Parity decomposition:

$$
h_{\mu\nu}(t,r,\theta,\phi) = h^e_{\mu\nu}(t,r,\theta,\phi) + h^o_{\mu\nu}(t,r,\theta,\phi),\tag{10}
$$

 \rightarrow where:

$$
h_{\mu\nu}^{e} = \left(r^{2} K^{lm} \gamma_{ab} Y^{lm} + h_{AB}^{lm} Y^{lm} + h_{A}^{e,lm} e_{a}^{e,lm} + G^{lm} e_{ab}^{e,lm} \right)_{\mu\nu}
$$

$$
h_{\mu\nu}^{o} = \left(h_{A}^{o,lm} e_{a}^{o,lm} + 2 h^{lm} e_{ab}^{o,lm} \right)_{\mu\nu}
$$
(11)

The Regge Wheeler Gauge

 \rightarrow In the Regge-Wheeler gauge:

$$
h^{odd}_{\mu\nu} = \begin{pmatrix} h^{o,lm}_{0} \\ h^{o,lm}_{1} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & e^{o,lm}_{\theta} & e^{o,lm}_{\phi} \\ 0 & 0 & e^{o,lm}_{\theta} & e^{o,lm}_{\phi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & h^{o,lm}_{0}e^{o,lm}_{\theta} & h^{o,lm}_{0}e^{o,lm}_{\phi} \\ 0 & 0 & h^{o,lm}_{1}e^{o,lm}_{\theta} & h^{o,lm}_{1}e^{o,lm}_{\phi} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

The Regge Wheeler Gauge

 \rightarrow In the Regge-Wheeler gauge:

$$
h^{odd}_{\mu\nu} = \begin{pmatrix} h^{o,lm}_{0} \\ h^{o,lm}_{1} \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & e^{o,lm}_{\theta} & e^{o,lm}_{\phi} \\ 0 & 0 & e^{o,lm}_{\theta} & e^{o,lm}_{\phi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & h^{o,lm}_{0}e^{o,lm}_{\theta} & h^{o,lm}_{0}e^{o,lm}_{\phi} \\ 0 & 0 & h^{o,lm}_{1}e^{o,lm}_{\theta} & h^{o,lm}_{1}e^{o,lm}_{\phi} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

 \rightarrow Symmetrizing:

$$
h^{odd}_{\mu\nu} = \begin{pmatrix} 0 & 0 & h^{o,lm}_0 \, e^{o,lm}_\theta & h^{o,lm}_0 \, e^{o,lm}_\phi \\ 0 & 0 & h^{o,lm}_1 \, e^{o,lm}_\theta & h^{o,lm}_1 \, e^{o,lm}_\phi \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{pmatrix}
$$

The Regge-Wheeler Gauge

 \rightarrow Also:

$$
h^{e,lm}_{\mu\nu}=r^2K^{lm}Y^{lm}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & sin^2\theta \end{pmatrix}+Y^{lm}\begin{pmatrix} fH^{lm}_0 & H^{lm}_1 & 0 & 0 \\ H^{lm}_1 & f^{-1}H^{lm}_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

The Regge-Wheeler Gauge

 \rightarrow Also:

$$
h_{\mu\nu}^{e,lm}=r^2K^{lm}Y^{lm}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & sin^2\theta \end{pmatrix}+Y^{lm}\begin{pmatrix} fH_0^{lm} & H_1^{lm} & 0 & 0 \\ H_1^{lm} & f^{-1}H_2^{lm} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

 \rightarrow s.t.:

$$
h_{\mu\nu}^{e,lm} = \begin{pmatrix} fH_0^{lm} & H_1^{lm} & 0 & 0 \\ H_1^{lm} & f^{-1}H_2^{lm} & 0 & 0 \\ 0 & 0 & r^2K^{lm} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta K^{lm} \end{pmatrix} Y^{lm}
$$
 (12)

$$
2\delta G_{AB} = \begin{pmatrix} A_{lm}^{(0)} & A_{lm}^{(1)} \\ A_{lm}^{(1)} & A_{lm}^{(2)} \end{pmatrix} Y^{lm} \tag{13}
$$

$$
2\delta G_{AB} = \begin{pmatrix} A_{lm}^{(0)} & A_{lm}^{(1)} \\ A_{lm}^{(1)} & A_{lm}^{(2)} \end{pmatrix} Y^{lm} \tag{13}
$$

$$
2\delta G_{Aa} = \alpha_A^{lm} e_a^{e,lm} + \beta_A^{lm} e_a^{o,lm} \tag{14}
$$

$$
2\delta G_{ab} = A_{lm}^{(3)} r^2 \gamma_{ab} Y^{lm} + s_{lm} e_{ab}^{e,lm} + t_{lm} e_{ab}^{o,lm} \tag{15}
$$

$$
2\delta G_{AB} = \begin{pmatrix} A_{lm}^{(0)} & A_{lm}^{(1)} \\ A_{lm}^{(1)} & A_{lm}^{(2)} \end{pmatrix} Y^{lm} \tag{13}
$$

$$
2\delta G_{Aa} = \alpha_A^{lm} e_a^{e,lm} + \beta_A^{lm} e_a^{o,lm} \tag{14}
$$

$$
2\delta G_{ab} = A_{lm}^{(3)}r^2\gamma_{ab}Y^{lm} + s_{lm}e_{ab}^{e,lm} + t_{lm}e_{ab}^{o,lm}
$$
 (15)

 \rightarrow s.t.:

Odd Equations

 \rightarrow Taking the inner product:

Odd Equations

 \rightarrow Taking the inner product:

$$
2\gamma^{ab}\left(\delta G_{Aa}e_b^{o,lm}\right) = \beta_A^{lm} \tag{16}
$$

$$
2\gamma^{ac}\gamma^{bd}\left(\delta G_{ab}e_{cd}^{o,lm}\right) = t_{lm} \tag{17}
$$

Odd Equations

 \rightarrow Taking the inner product:

$$
2\gamma^{ab}\left(\delta G_{Aa}e_b^{o,lm}\right) = \beta_A^{lm} \tag{16}
$$

$$
2\gamma^{ac}\gamma^{bd}\left(\delta G_{ab}e_{cd}^{o,lm}\right) = t_{lm} \tag{17}
$$

 \rightarrow where:

$$
\beta_0^{lm} = f(h_{0,lm}'' + i\omega h_{1,lm}') - 2i\omega \frac{f}{r}h_1^{lm} + \left(\frac{f''}{2} + \frac{l(l+1) + f - 1}{r^2}\right)h_0^{lm}
$$

$$
\beta_1^{lm} = f^{-1}(i\omega h_{0,lm}' - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r}h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right)h_1^{lm}
$$

$$
t_{lm} = i\omega f^{-1}h_0^{lm} + fh_{1,lm}' + f'h_1^{lm}
$$

[The Master Equations](#page-23-0)

 \rightarrow However, not all the Odd equations are independent.

 \rightarrow However, not all the Odd equations are independent.

 \rightarrow One can show that a combination of β_1^{lm} and t_{lm} and its derivatives yield β_0^{lm} .

 \rightarrow However, not all the Odd equations are independent.

 \rightarrow One can show that a combination of β_1^{lm} and t_{lm} and its derivatives yield β_0^{lm} .

 \rightarrow Hence, there are only two independent equations:

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm} = 16\pi \delta T_1^{odd}
$$

$$
i\omega f^{-1} h_0^{lm} + f h'_{1,lm} + f' h_1^{lm} = 16\pi \delta T_s^{odd}
$$

 \rightarrow However, not all the Odd equations are independent.

 \rightarrow One can show that a combination of β_1^{lm} and t_{lm} and its derivatives yield β_0^{lm} .

 \rightarrow Hence, there are only two independent equations:

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm} = 16\pi \delta T_1^{odd}
$$

$$
i\omega f^{-1} h_0^{lm} + f h'_{1,lm} + f' h_1^{lm} = 16\pi \delta T_s^{odd}
$$

 \rightarrow Making [\[1\]](#page-52-1):

$$
16\pi \delta T_1^{odd} = A
$$

$$
16\pi \delta T_s^{odd} = B
$$

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm} = A
$$

$$
i\omega f^{-1} h_0^{lm} + f h'_{1,lm} + f' h_1^{lm} = B
$$

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm} = A
$$

$$
i\omega f^{-1} h_0^{lm} + f h'_{1,lm} + f' h_1^{lm} = B
$$

 \rightarrow Isolating h_0^{lm} in the second equation:

$$
h_0^{lm} = \frac{if}{\omega} \left(f h'_{1,lm} + f' h_1^{lm} - B \right)
$$
 (18)

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm} = A
$$

$$
i\omega f^{-1} h_0^{lm} + f h'_{1,lm} + f' h_1^{lm} = B
$$

 \rightarrow Isolating h_0^{lm} in the second equation:

$$
h_0^{lm} = \frac{if}{\omega} \left(f h'_{1,lm} + f' h_1^{lm} - B \right)
$$
 (18)

 \rightarrow Taking the derivative on both sides:

$$
h'_{0,lm} = \left(\frac{if}{\omega} \left(f h'_{1,lm} + f' h_1^{lm} - B \right) \right)'
$$
 (19)

 \rightarrow Subs eq.:

$$
h'_{0,lm} = \left(\frac{if}{\omega} \left(f h'_{1,lm} + f' h_1^{lm} - B \right) \right)'
$$
 (20)

 \rightarrow into:

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \frac{(l-1)(l+2)}{r^2} h_1^{lm} = A \qquad (21)
$$

 \rightarrow Subs eq.:

$$
h'_{0,lm} = \left(\frac{if}{\omega} \left(fh'_{1,lm} + f'h_1^{lm} - B \right) \right)'
$$
 (20)

 \rightarrow into:

$$
f^{-1}(i\omega h'_{0,lm} - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \frac{(l-1)(l+2)}{r^2} h_1^{lm} = A \qquad (21)
$$

 \rightarrow We get:

$$
\left(\omega^2 + (f^2)' + \frac{1}{2}ff'' - \frac{2ff'}{r} - f\frac{(l(l+1) - f - 1)}{r^2}\right)h_1^{lm} +
$$

$$
+ h_{1,lm}''f^2 + \left(3f' - \frac{2f}{r}\right)fh_{1,lm}' = -A + (fB)' - \frac{2fB}{r}
$$
(22)

 \rightarrow Presenting the Regge-Wheeler Function Q_{lm} s.t.:

 \rightarrow Presenting the Regge-Wheeler Function Q_{lm} s.t.:

$$
h_1^{lm} = \frac{r}{f} Q_{lm} \tag{23}
$$

 \rightarrow Presenting the Regge-Wheeler Function Q_{lm} s.t.:

$$
h_1^{lm} = \frac{r}{f} Q_{lm} \tag{23}
$$

 \rightarrow Subs. into the previous equation:

$$
rfQ''_{lm} + rf'Q'_{lm} + \left(\frac{r\omega^2}{f} - \frac{r}{2}f'' + f' - \frac{(l(l+1) + f - 1)}{r}\right)Q_{lm} = F_{lm}(r)
$$

 \rightarrow Presenting the Regge-Wheeler Function Q_{lm} s.t.:

$$
h_1^{lm} = \frac{r}{f} Q_{lm} \tag{23}
$$

 \rightarrow Subs. into the previous equation:

$$
rfQ''_{lm} + rf'Q'_{lm} + \left(\frac{r\omega^2}{f} - \frac{r}{2}f'' + f' - \frac{(l(l+1) + f - 1)}{r}\right)Q_{lm} = F_{lm}(r)
$$

 \rightarrow Introducing the tortoise coordinate $r_*(r)$ where:

$$
dr_* = \frac{dr}{f} \tag{24}
$$

 \rightarrow In these coordinates, and for $f = 1 - \frac{\sigma}{r}$ $\frac{\sigma}{r}$:

 \rightarrow Presenting the Regge-Wheeler Function Q_{lm} s.t.:

$$
h_1^{lm} = \frac{r}{f} Q_{lm} \tag{23}
$$

 \rightarrow Subs. into the previous equation:

$$
rfQ''_{lm} + rf'Q'_{lm} + \left(\frac{r\omega^2}{f} - \frac{r}{2}f'' + f' - \frac{(l(l+1) + f - 1)}{r}\right)Q_{lm} = F_{lm}(r)
$$

 \rightarrow Introducing the tortoise coordinate $r_*(r)$ where:

$$
dr_* = \frac{dr}{f} \tag{24}
$$

 \rightarrow In these coordinates, and for $f = 1 - \frac{\sigma}{r}$ $\frac{\sigma}{r}$:

$$
\frac{\partial^2 Q_{lm}}{\partial r_*^2} + f \frac{\left(\frac{2\omega^2 r^2}{f} - r^2 f'' + 2r f' - 2l(l+1) - 2f + 2\right)}{2r^2} Q_{lm} = F_{lm}(r)
$$
\n(25)

 \rightarrow Rewriting:

 \rightarrow Rewriting:

$$
\frac{\partial^2 Q_{lm}}{\partial r_*^2} + \left(\omega^2 - V_{odd}\right) Q_{lm} = F_{lm}(r) \tag{26}
$$

 \rightarrow Rewriting:

$$
\frac{\partial^2 Q_{lm}}{\partial r_*^2} + \left(\omega^2 - V_{odd}\right) Q_{lm} = F_{lm}(r) \tag{26}
$$

 \rightarrow where:

$$
V_{odd} = \left(\frac{f''}{2} - \frac{f'}{r} - \frac{(l(l+1) + f - 1)}{r^2}\right)
$$

$$
F_{lm} = -16\pi \left[\delta T_1^{odd} - \delta T_s^{odd} \left(f' - \frac{2f}{r}\right) - f\left(\delta T_s^{odd}\right)'\right]
$$
 (27)

 \rightarrow Rewriting:

$$
\frac{\partial^2 Q_{lm}}{\partial r_*^2} + \left(\omega^2 - V_{odd}\right) Q_{lm} = F_{lm}(r) \tag{26}
$$

 \rightarrow where:

$$
V_{odd} = \left(\frac{f''}{2} - \frac{f'}{r} - \frac{(l(l+1) + f - 1)}{r^2}\right)
$$

$$
F_{lm} = -16\pi \left[\delta T_1^{odd} - \delta T_s^{odd} \left(f' - \frac{2f}{r}\right) - f\left(\delta T_s^{odd}\right)'\right]
$$
(27)

 \rightarrow Eq. [26](#page-38-0) is known as the **Regge-Wheeler equation**.

 \rightarrow The path to the Zerilli master equation is exactly the same, though much more extensive.

 \rightarrow The path to the Zerilli master equation is exactly the same, though much more extensive.

 \rightarrow Let's go to the SageMath notebook.

 \rightarrow The path to the Zerilli master equation is exactly the same, though much more extensive.

 \rightarrow Let's go to the SageMath notebook.

 \rightarrow As seen in the SageMath notebook:

$$
\frac{\partial^2 Z_{lm}}{\partial r_*^2} + \left(\omega^2 - V_{even}\right) Z_{lm} = S_{lm}(r) \tag{28}
$$

 \rightarrow which is the **Zerilli equation**

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

$$
\Box h_{\mu\nu} = 0 \tag{29}
$$

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

$$
\Box h_{\mu\nu} = 0 \tag{29}
$$

 \rightarrow Perturbations on the geometry of spacetime propagates as a wave at the speed of light:

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

$$
\Box h_{\mu\nu} = 0 \tag{29}
$$

 \rightarrow Perturbations on the geometry of spacetime propagates as a wave at the speed of light:

$$
k^{\mu}k_{\mu} = 0 \qquad k^{\mu}P_{\mu\nu} = 0 \tag{30}
$$

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

$$
\Box h_{\mu\nu} = 0 \tag{29}
$$

 \rightarrow Perturbations on the geometry of spacetime propagates as a wave at the speed of light:

$$
k^{\mu}k_{\mu} = 0 \qquad k^{\mu}P_{\mu\nu} = 0 \tag{30}
$$

 \rightarrow Then we took a turn and ended up on curved spacetimes. In this context we discovered that perturbations of spherically symmetric curved spacetimes are governed by Schrodinger-like equations:

 \rightarrow We went on a journey that started in flat spacetime, and got us here:

$$
\Box h_{\mu\nu} = 0 \tag{29}
$$

 \rightarrow Perturbations on the geometry of spacetime propagates as a wave at the speed of light:

$$
k^{\mu}k_{\mu} = 0 \qquad k^{\mu}P_{\mu\nu} = 0 \tag{30}
$$

 \rightarrow Then we took a turn and ended up on curved spacetimes. In this context we discovered that perturbations of spherically symmetric curved spacetimes are governed by Schrodinger-like equations:

$$
\frac{\partial^2 Q_{lm}}{\partial r_*^2} + (\omega^2 - V_{odd}) Q_{lm} = F_{lm}(r)
$$

$$
\frac{\partial^2 Z_{lm}}{\partial r_*^2} + (\omega^2 - V_{even}) Z_{lm} = S_{lm}(r)
$$

That's All Folks!

Thank you!

Namarië

- [1] Emanuele Berti. "Black Hole Perturbation Theory". In: Summer School on Gravitational-Wave Astronomy, International Center for Theoretical Sciences, Bangalore (2016). URL: <https://www.icts.res.in/event/page/3071>.
- [2] Valeria Ferrari, Leonardo Gualtieri, and Paolo Pani. General relativity and its applications: black holes, compact stars and gravitational waves. CRC press, 2020.