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Recall

→ The spherical tensors and its orthogonality relations [2]:
• Scalar → Y lm:

⟨Y lm, Y l′m′⟩ = δll
′
δmm′

(1)

• Vector → Y lm
a (even), Slm

a (polar):

γab⟨Slm
a , Sl′m′

b ⟩ = l(l + 1)δll
′
δmm′

γab⟨Y lm
a , Y l′m′

b ⟩ = l(l + 1)δll
′
δmm′

γab⟨Y lm
a , Sl′m′

b ⟩ = 0 (2)

• Tensor → Z lm
ab (even), Slm

ab (polar):

γacγbd⟨Slm
ac , S

l′m′
bd ⟩ = l(l + 1)(l + 2)δll

′
δmm′

γacγbd⟨Z lm
ac , Z

l′m′
bd ⟩ = l(l + 1)(l + 2)δll

′
δmm′

γacγbd⟨Z lm
ac , S

l′m′
bd ⟩ = 0 (3)



Looking at it another way...

→ The spherical tensors and its orthogonality relations (for fixed l,m):

• Vector → ee,lma , eo,lma :

γabeo,lma eo,lmb = l(l + 1)

γabee,lma ee,lmb = l(l + 1)

γabee,lma eo,lmb = 0 (4)

• Tensor → ee,lmab , eo,lmab :

γacγbdeo,lmac eo,lmbd = l(l + 1)(l + 2)

γacγbdee,lmac ee,lmbd = l(l + 1)(l + 2)

γacγbdee,lmac eo,lmbd = 0 (5)
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Perturbation Decomposition
→ The Harmonic decomposition (for fixed l,m):

hµν =

(
hAB hAa

haA hab

)
µν

, (6)

→ where:

hAB = hlmABY
lm (7)

hAa = he,lmA ee,lma + ho,lmA eo,lma (8)

hab = r2
(
K lmγabY

lm +Glmee,lmab + 2hlmeo,lmab

)
(9)

→ Parity decomposition:

hµν(t, r, θ, ϕ) = heµν(t, r, θ, ϕ) + hoµν(t, r, θ, ϕ), (10)

→ where:

heµν =
(
r2K lmγabY

lm + hlmABY
lm + he,lmA ee,lma +Glmee,lmab

)
µν

hoµν =
(
ho,lmA eo,lma + 2hlmeo,lmab

)
µν

(11)
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The Regge Wheeler Gauge

→ In the Regge-Wheeler gauge:

hoddµν =


ho,lm0

ho,lm1

0
0

(0 0 eo,lmθ eo,lmϕ

)
=


0 0 ho,lm0 eo,lmθ ho,lm0 eo,lmϕ

0 0 ho,lm1 eo,lmθ ho,lm1 eo,lmϕ

0 0 0 0
0 0 0 0



→ Symmetrizing:

hoddµν =


0 0 ho,lm0 eo,lmθ ho,lm0 eo,lmϕ

0 0 ho,lm1 eo,lmθ ho,lm1 eo,lmϕ

∗ ∗ 0 0
∗ ∗ 0 0





The Regge Wheeler Gauge

→ In the Regge-Wheeler gauge:

hoddµν =


ho,lm0

ho,lm1

0
0

(0 0 eo,lmθ eo,lmϕ

)
=


0 0 ho,lm0 eo,lmθ ho,lm0 eo,lmϕ

0 0 ho,lm1 eo,lmθ ho,lm1 eo,lmϕ

0 0 0 0
0 0 0 0



→ Symmetrizing:

hoddµν =


0 0 ho,lm0 eo,lmθ ho,lm0 eo,lmϕ

0 0 ho,lm1 eo,lmθ ho,lm1 eo,lmϕ

∗ ∗ 0 0
∗ ∗ 0 0





The Regge-Wheeler Gauge

→ Also:

he,lmµν = r2K lmY lm


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 sin2θ

+ Y lm


fH lm

0 H lm
1 0 0

H lm
1 f−1H lm

2 0 0
0 0 0 0
0 0 0 0



→ s.t.:

he,lmµν =


fH lm

0 H lm
1 0 0

H lm
1 f−1H lm

2 0 0
0 0 r2K lm 0
0 0 0 r2sin2θK lm

Y lm (12)
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Odd Equations

→ For fixed ω, l,m and after a Fourier transform:

2δGAB =

(
A

(0)
lm A

(1)
lm

A
(1)
lm A

(2)
lm

)
Y lm (13)

2δGAa = αlm
A ee,lma + βlm

A eo,lma (14)

2δGab = A
(3)
lmr2γabY

lm + slmee,lmab + tlmeo,lmab (15)

→ s.t.:
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Odd Equations

→ Taking the inner product:

2γab
(
δGAae

o,lm
b

)
= βlm

A (16)

2γacγbd
(
δGabe

o,lm
cd

)
= tlm (17)

→ where:

βlm
0 = f(h′′

0,lm + iωh′
1,lm)− 2iω

f

r
hlm
1 +

(
f ′′

2
+

l(l + 1) + f − 1

r2

)
hlm
0

βlm
1 = f−1(iωh′

0,lm − ω2hlm
1 )− 2iω

f−1

r
hlm
0 +

(
f ′′

2
+

(l(l + 1)− f − 1)

r2

)
hlm
1

tlm = iωf−1hlm
0 + fh′

1,lm + f ′hlm
1
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The Master Equations



The Regge-Wheeler Master Equation

→ However, not all the Odd equations are independent.

→ One can show that a combination of βlm
1 and tlm and its derivatives

yield βlm
0 .

→ Hence, there are only two independent equations:

f−1(iωh′
0,lm − ω2hlm

1 )− 2iω
f−1

r
hlm
0 +

(
f ′′

2
+

(l(l + 1)− f − 1)

r2

)
hlm
1 = 16πδT odd

1

iωf−1hlm
0 + fh′

1,lm + f ′hlm
1 = 16πδT odd

s

→ Making [1]:

16πδT odd
1 = A

16πδT odd
s = B
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The Regge-Wheeler Master Equation:
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→ Isolating hlm0 in the second equation:

hlm0 =
if

ω

(
fh′1,lm + f ′hlm1 −B

)
(18)

→ Taking the derivative on both sides:

h′0,lm =

(
if

ω

(
fh′1,lm + f ′hlm1 −B

))′
(19)
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The Regge-Wheeler Master Equation

→ Subs eq.:

h′0,lm =

(
if

ω

(
fh′1,lm + f ′hlm1 −B

))′
(20)

→ into:

f−1(iωh′0,lm − ω2hlm1 )− 2iω
f−1

r
hlm0 +

(l − 1)(l + 2)

r2
hlm1 = A (21)

→ We get:(
ω2 + (f2)′ +

1

2
ff ′′ − 2ff ′

r
− f

(l(l + 1)− f − 1)

r2

)
hlm1 +

+ h′′1,lmf2 +

(
3f ′ − 2f

r

)
fh′1,lm = −A+ (fB)′ − 2fB

r
(22)
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The Regge-Wheeler Master Equation
→ Presenting the Regge-Wheeler Function Qlm s.t.:

hlm1 =
r

f
Qlm (23)

→ Subs. into the previous equation:

rfQ′′
lm + rf ′Q′

lm +

(
rω2

f
− r

2
f ′′ + f ′ − (l(l + 1) + f − 1)

r

)
Qlm = Flm(r)

→ Introducing the tortoise coordinate r∗(r) where:

dr∗ =
dr

f
(24)

→ In these coordinates, and for f = 1− σ
r :

∂2Qlm

∂r2∗
+ f

(
2ω2r2

f − r2f ′′ + 2rf ′ − 2l(l + 1)− 2f + 2
)

2r2
Qlm = Flm(r)

(25)
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→ Introducing the tortoise coordinate r∗(r) where:

dr∗ =
dr

f
(24)

→ In these coordinates, and for f = 1− σ
r :

∂2Qlm

∂r2∗
+ f

(
2ω2r2

f − r2f ′′ + 2rf ′ − 2l(l + 1)− 2f + 2
)

2r2
Qlm = Flm(r)

(25)



The Regge-Wheeler Master Equation

→ Rewriting:

∂2Qlm

∂r2∗
+
(
ω2 − Vodd

)
Qlm = Flm(r) (26)

→ where:

Vodd =

(
f ′′

2
− f ′

r
− (l(l + 1) + f − 1)

r2

)
Flm = −16π

[
δT odd

1 − δT odd
s

(
f ′ − 2f

r

)
− f

(
δT odd

s

)′]
(27)

→ Eq. 26 is known as the Regge-Wheeler equation.
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The Zerilli Master Equation

→ The path to the Zerilli master equation is exactly the same, though
much more extensive.

→ Let’s go to the SageMath notebook.

→ As seen in the SageMath notebook:

∂2Zlm

∂r2∗
+
(
ω2 − Veven

)
Zlm = Slm(r) (28)

→ which is the Zerilli equation
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Epilogue
→ We went on a journey that started in flat spacetime, and got us here:

□hµν = 0 (29)

→ Perturbations on the geometry of spacetime propagates as a wave at
the speed of light:

kµkµ = 0 kµPµν = 0 (30)

→ Then we took a turn and ended up on curved spacetimes. In this
context we discovered that perturbations of spherically symmetric
curved spacetimes are governed by Schrodinger-like equations:
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Namarië

That’s All Folks!

Thank you!

Namarië
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