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— The spherical tensors and its orthogonality relations (for fixed [, m):
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Perturbation Decomposition

— The Harmonic decomposition (for fixed I, m):
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The Regge Wheeler Gauge

— In the Regge-Wheeler gauge:
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The Regge Wheeler Gauge

— In the Regge-Wheeler gauge:
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The Regge-Wheeler Gauge

— Also:
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The Regge-Wheeler Gauge

— Also:
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Odd Equations

— For fixed w,l, m and after a Fourier transform:
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Odd Equations

— For fixed w,l,m and after a Fourier transform:

A(O) A(l) .
20G ap = ( Agg Aj(g) ! (13)
25GAa — alm elm +l8lm o,lm (14)
20G 4 = A( )7“ %bylm + slmeab +t meo tm (15)

— s.t.:



Odd Equations

— Taking the inner product:
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— Taking the inner product:
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The Master Equations




The Regge-Wheeler Master Equation

— However, not all the Odd equations are independent.
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— However, not all the Odd equations are independent.

— One can show that a combination of ,Bim and tj,, and its derivatives
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The Regge-Wheeler Master Equation:
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The Regge-Wheeler Master Equation:
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The Regge-Wheeler Master Equation:
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The Regge-Wheeler Master Equation

— Subs eq.:
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The Regge-Wheeler Master Equation

— Subs eq.: /
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The Regge-Wheeler Master Equation

— Presenting the Regge-Wheeler Function @y, s.t.:
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The Regge-Wheeler Master Equation

— Presenting the Regge-Wheeler Function @y, s.t.:
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The Regge-Wheeler Master Equation

— Presenting the Regge-Wheeler Function @y, s.t.:
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The Regge-Wheeler Master Equation

— Presenting the Regge-Wheeler Function @y, s.t.:

r

R = — Qum, 23
1 f ( )
— Subs. into the previous equation:
2 I(l+1)+f-1
e e e LI MO
— Introducing the tortoise coordinate 7. (r) where:
dr
dry = — 24
7 (24)
— In these coordinates, and for f =1 — 7:
20, (%—ﬂfuzrf/—zz(wn—2f+2)
m - F
or2 +f o2 Qim im(7)

(25)



The Regge-Wheeler Master Equation

— Rewriting:
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— Rewriting:
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— Eq. 26 is known as the Regge-Wheeler equation.



The Zerilli Master Equation

— The path to the Zerilli master equation is exactly the same, though
much more extensive.
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The Zerilli Master Equation

— The path to the Zerilli master equation is exactly the same, though
much more extensive.

— Let’s go to the SageMath notebook.

— As seen in the SageMath notebook:
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— which is the Zerilli equation



— We went on a journey that started in flat spacetime, and got us here:
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curved spacetimes are governed by Schrodinger-like equations:



— We went on a journey that started in flat spacetime, and got us here:

Ok, =0 (29)

— Perturbations on the geometry of spacetime propagates as a wave at

the speed of light:
k'k, =0 E'P,, =0 (30)

— Then we took a turn and ended up on curved spacetimes. In this
context we discovered that perturbations of spherically symmetric
curved spacetimes are governed by Schrodinger-like equations:
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That’s All Folks!
Thank you!
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