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1 Introduction
The notion of symmetry is ubiquitous throughout physics. It is at the core of every physical theory
and one could argue it is a necessity for one to even do physics at all. Symmetries allow us to
greatly simplify the difficult problems we encounter in the Universe and approach them in a feasible
manner, and they often reflect fundamental insights about the structure of nature.

When studying symmetries, the concept of group becomes particularly useful (see, e.g., Zee
2016). Groups are abstract mathematical structures similar to, but simpler than, vector spaces.
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The “collection” of symmetries of a certain kind of a given physical system often, if not always,
constitutes a group. Hence, knowing the basic parlance of group theory is a powerful manner of
studying symmetries and their consequences.

TheBondi–Metzner–Sachs (BMS) group is the groupof symmetries at infinity in asymptotically
flat spacetimes. In other words, consider the following scenario in general relativity. One has a
given distribution of matter in spacetime arranged in such a manner that, far away from all of
this matter, spacetime is nearly flat in a suitable sense (which we shall define). Far from all these
sources, spacetime resembles in a suitable sense Minkowski spacetime, so we would expect that the
symmetries at infinity should somehow resemble the symmetries of Minkowski spacetime—the
latter form the so-called Poincaré group. The BMS group is this group of symmetries at infinity,
and it was a surprise when Bondi, Metzner, and Sachs discovered it was actually a group much
bigger than the Poincaré group (Bondi, Van der Burg, and Metzner 1962; Sachs 1962b).

This simple fact hides deep physical truths about general relativity. Namely, it is a statement
that general relativity does not reduce to special relativity at large distances. Rather, it reduces to
a much more complex structure that arises only at infinity. This rich structure at infinity can be
exploited, as done by Dappiaggi, Moretti, and Pinamonti (2017), to construct physically interest-
ing states for quantum fields evolving on asymptotically flat backgrounds. There are also other
physical implications. For example, as reviewed by Strominger (2018), the BMS symmetries imply
correlations between 𝑆-matrix elements that yield the so-called soft graviton theorem (Weinberg
1965, 1995), which is a fundamental ingredient for understanding the infrared structure of cross
sections in scattering experiments. BMS transformations can also be related to the so-calledmemory
effect—originally discovered by Zel’dovich and Polnarev (1974)—which predicts that after the
passage of a gravitational wave two nearby detectors will be permanently displaced. It is expected
that this effect should be measurable in the near future (Favata 2010; Grant and Nichols 2023).

In these lecture notes, we provide a simple introduction to the BMS group and some of its
physical consequences. We also discuss some prerequisites that are essential to understanding the
discussion, such as group theory and the concept of conformal infinity. It is assumed that the reader
is familiar with general relativity at an undergraduate level, and some applications might require
previous knowledge of quantum field theory to be fully appreciated (although the author tried his
best to keep the necessary knowledge to aminimum). Through familiarity with general relativity we
also assume some familiarity with differential geometry. We use the same notation and conventions
employed in the textbook by Wald (1984). This includes abstract index notation, metric signature
− + ++, and geometric units with 𝐺 = 𝑐 = 1. Latin indices 𝑎, 𝑏, … represent abstract indices, Greek
indices 𝜇, 𝜈, … represent spacetime coordinate indices.

2 Symmetries and Groups
We begin by discussing what is the mathematical structure of the symmetries of a physical system.
This will naturally lead us to the notion of group, which is a well-established and well-studied
concept in mathematics. We shall then understand some of the basic ideas of group theory and in
particular exploit them to investigate properties of general relativistic spacetimes.
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2.1 Rotations

Perhaps the paradigmatic example of a symmetry is rotational symmetry. This means that the
physical system does not change when we rotate it about a specific point and is present in many
interesting examples in fundamental physics. For example, the hydrogen atom model in quantum
mechanics presents spherical symmetry. So does the Schwarzschild solution in general relativity and
many star solutions of interest.

Let us for a moment ponder about what is it that defines a rotation as a rotation. To be concrete,
we are thinking right now about rotations as operations on three-dimensional real vectors, although
the discussion is easily generalized to higher dimensions. We know that a generic rotation should
be a linear transformation 𝑅∶ ℝ3 → ℝ3. Indeed, 𝑅(𝛼𝑣⃗) = 𝛼𝑅𝑣⃗, for rotations should not “see” the
length of a vector: they only care about its direction. Furthermore, 𝑅(𝑢⃗ + 𝑣⃗) = 𝑅𝑢⃗ + 𝑅𝑣⃗, because
the rotation occurs in a “solid” manner: both elements of the sum and the sum itself should all
be rotated in precisely the same way. Hence, we conclude a general rotation should be a linear
transformation.

This, however, is surely not enough to characterize what we mean by a rotation. There are far
too many linear transformations! For example, given the canonical basis {𝑒⃗𝑖}, we could pick the
transformation defined by 𝑇𝑒⃗𝑖 = (1 + 𝛿𝑖2)𝑒⃗𝑖, where 𝛿𝑖𝑗 is the Kronecker delta. This transformation
simply stretches one of the coordinate axes, while keeping the remaining ones constant. This is
surely a linear transformation, but it looks nothing like a translation.

The extra property that characterizes rotations is that they preserve angles and norms. Hence,
they do not impart any sort of stretching into the vectors they act on and they do not change the
relative angle between vectors. Mathematically this is expressed in terms of the scalar product inℝ3
as

𝑅𝑢⃗ ⋅ 𝑅𝑣⃗ = 𝑢⃗ ⋅ 𝑣⃗. (1)

This can be shown to be equivalent to the requirement that

𝑅⊺𝑅 = 1, (2)

where 𝑅⊺ is the transpose of 𝑅 and 1 is the identity matrix. Matrices that satisfy Eq. (2) are said to
be orthogonal. This invites us to define

O(3) = {𝑅 ∈ 𝕄3; 𝑅
⊺𝑅 = 1}, (3)

where𝕄𝑛 is the space of 𝑛 × 𝑛 real matrices and the “O” in O(3) stands for “orthogonal”. O(3) is
the so-called orthogonal group in three dimensions. Notice that we can analogously define the
orthogonal group in 𝑛 dimensions through

O(𝑛) = {𝑅 ∈ 𝕄𝑛; 𝑅
⊺𝑅 = 1}. (4)

This is the collection (or rather the group) of rotations in 𝑛 dimensions.
We would like to know which sort of structure represents collections of symmetries in general,

so it is interesting for us to study some properties of O(𝑛) to figure out an abstract definition.
𝑅⊺𝑅 = 1 seems too strict, since this is specific to rotations, and not every symmetry is a rotation. In
fact, even linearity might be a stretch, since complicated symmetries could be nonlinear in principle.
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One of the most basic facts we can notice about O(𝑛) is that it is endowed with a product.
Namely, given two rotations 𝑅 and 𝑆, we can also define 𝑅𝑆, which stands for “apply the rotation 𝑆,
and then the rotation 𝑅”. This constitutes a rotation, for one can show through direct calculation
that 𝑅𝑆 ∈ O(𝑛). This is our first axiom for a group: a group should be a set 𝐺 endowed with a
product ⋅ ∶ 𝐺 × 𝐺 → 𝐺. Indeed, notice that if we apply two symmetry transformations in sequence,
the result should also be a symmetry. This is due to the fact that a symmetry related two physically
equivalent configurations, and thus applying two symmetries in sequence yields a configuration
that is physically equivalent to the original one.

Next, we notice that the product in O(𝑛) is associative. Indeed, given rotations 𝑅, 𝑆, and 𝑇, we
have that (𝑅𝑆)𝑇 = 𝑅(𝑆𝑇). We will also impose associativity as one of the axioms for a group. This
is due both to the fact that it is mathematically interesting to do so—the resulting theory is quite
rich—and due to the fact that it is even difficult to conceive how one could apply transformations
to a physical system in a manner which is not associative. If we think of the transformation (𝑅𝑆)𝑇
in terms of two consecutive transformations (𝑇 and then 𝑅𝑆), it is not obvious that it is equivalent
to 𝑅(𝑆𝑇) (𝑆𝑇 and then 𝑅). However, it seems intuitive that these two transformation processes
should be equivalent to the “physical realization” 𝑇, then 𝑆, then 𝑅, which we would denote as 𝑅𝑆𝑇
(without parentheses). Hence, it seems these transformations should compose in an associative
manner. A second argument could be that each transformation should be viewed as a function
between configurations of a physical system, and the composition of functions is always associative.

We then notice that “doing nothing” should be considered a symmetry. Indeed, a physical
configuration is physically indistinguishable from itself. Hence, we expect there to be an identity in
a group. And, correctly, we have that 1 ∈ O(𝑛), as one can promptly check.

Finally, undoing a symmetry transformation also constitutes a symmetry. If we perform a
transformation in the system in such a way that the configuration after the transformation is indis-
tinguishable from the configuration before the transformation, it is surely true that the statement
also holds the other way around. Thus, the group should be populated with the inverses of every
group element. As expected, for every 𝑅 ∈ O(𝑛), 𝑅−1 = 𝑅⊺ ∈ O(𝑛).

We thus arrive at the following definition.

Definition 1 [Group]:
A group is a pair (𝐺, ⋅)where 𝐺 is a set and ⋅ ∶ 𝐺 × 𝐺 → 𝐺 is a function satisfying the following

conditions:

i. ⋅ is associative, so (𝑔1 ⋅ 𝑔2) ⋅ 𝑔3 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑔3) for every 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺,

ii. ⋅ has a neutral element 𝑒, i.e., there is an element 𝑒 ∈ 𝐺with 𝑒 ⋅ 𝑔 = 𝑔 ⋅ 𝑒 = 𝑔 for all 𝑔 ∈ 𝐺,

iii. all elements in 𝐺 have inverses, meaning that for each 𝑔 ∈ 𝐺 there is some 𝑔−1 ∈ 𝐺 with
𝑔 ⋅ 𝑔−1 = 𝑔−1 ⋅ 𝑔 = 𝑒.

Groups which are also commutative (𝑔1 ⋅ 𝑔2 = 𝑔2 ⋅ 𝑔1 for all 𝑔1, 𝑔2 ∈ 𝐺) are said to beAbelian. We
often omit ⋅when writing products when the product operation is clear: 𝑔1𝑔2 = 𝑔1 ⋅ 𝑔2. ♠

Our interest in groups is similar to one’s interest in vector spaces. These are useful mathemati-
cal concepts that have been well-developed by mathematicians and that occur once and again in
physical contexts. As such, it is useful to know a thing or two about groups because this helps
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us understanding physical phenomena better. Zee (2016) discusses applications of group theory
to physics. In the following, we will restrict our attention to groups that are of interest for our
discussions.

Just as one has the notion of a subspace of a vector space, we also have the notion of a subgroup
of a group.

Definition 2 [Subgroup]:
Let (𝐺, ⋅) be a group and𝐻 ⊆ 𝐺. We say (𝐻, ⋅) is a subgroup of (𝐺, ⋅) if (𝐻, ⋅) is a group. Notice

the product has to be inherited from the “mother” group. ♠

As an example, consider

SO(𝑛) = {𝑅 ∈ 𝕄𝑛; 𝑅
⊺𝑅 = 1, det𝑅 = +1}. (5)

Notice that SO(𝑛) ⊆ O(𝑛). In fact, every element 𝑅 ∈ O(𝑛) either lies in SO(𝑛) or has det𝑅 = −1.
One can show that SO(𝑛) is a subgroup of O(𝑛), and it is SO(𝑛) that is often referred to as the
group of rotations. The reason is that O(𝑛) is essentially SO(𝑛)with the possibility of composing
an element of SO(𝑛)with a reflection, so SO(𝑛) restricts our attention to the rotations that involve
no reflections. The “S” in SO(𝑛) stands for “special”, and refers to the fact that the matrices have
unit determinant.

In order to understand further the structure of SO(𝑛) and O(𝑛), it is useful to define a Lie
group.

Definition 3 [Lie Group]:
A Lie group is a group (𝐺, ⋅) endowed with a smooth manifold structure in such a manner that

the maps 𝜇∶ 𝐺 × 𝐺 → 𝐺 and 𝜄 ∶ 𝐺 → 𝐺 given by 𝜇(𝑔1, 𝑔2) = 𝑔1 ⋅ 𝑔2 and 𝜄(𝑔) = 𝑔−1 are smooth. ♠

Hence, a Lie group is a smooth group. This is useful because often in physics we encounter
groups that have infinitely many elements, where “infinitely many” is meant in a continuous (or,
more appropriately, smooth) way. This is the case of O(𝑛) and SO(𝑛). We can define coordinates
on these groups by employing the so-called Euler angles (see, for example, Goldstein 1980). SO(𝑛)
is composed of a connected manifold, which means it is a “unique continuous piece”. O(𝑛), on the
other hand, has two connected components, meaning there is a continuous piece with det𝑅 = +1
and another with det𝑅 = −1—one cannot smoothly change the signal of the determinant from +1
to −1.

2.2 Lorentz Group

Let us nowmove on to amore complicated example. Let us considerMinkowski spacetime (ℝ4, 𝜂𝑎𝑏 ).
We would like to investigate the linear isometries of this spacetime. Isometries are metric-preserving
diffeomorphisms, which means that they are transformations that preserve both the underlying
spaceℝ4 and the metric 𝜂𝑎𝑏 . Hence, they can be understood as the fundamental symmetries of the
spacetime. Linear isometries are a particular class of isometries that has the form

𝑥𝜇 → 𝑥′𝜇 = Λ𝜇𝜈𝑥𝜈 (6)

for some matrix Λ𝜇𝜈.
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For a diffeomorphism to preserve the metric it should satisfy

𝜂𝜇𝜈
𝜕𝑥′𝜇

𝜕𝑥𝜌
𝜕𝑥′𝜈

𝜕𝑥𝜎 = 𝜂𝜌𝜎 . (7)

For a linear transformation, we can write this simply as

𝜂𝜇𝜈Λ
𝜇
𝜌Λ𝜈𝜎 = 𝜂𝜌𝜎 . (8)

In Cartesian coordinates, we can write 𝜂 as the matrix

𝜂 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (9)

and the expression ccan be written simply as

Λ⊺𝜂Λ = 𝜂. (10)

We thus define the group

O(3, 1) = {Λ ∈ 𝕄4; Λ
⊺𝜂Λ = 𝜂}, (11)

known as the (3, 1)-pseudo-orthogonal group. “3” refers to the three positive signs in theMinkowski
metric and “1” refers to the remaining negative sign. Notice this is a generalization of the orthogonal
groups: O(𝑛) could be defined as the group with matrices satisfying 𝑅⊺1𝑅 = 1, which is similar to
the condition defining O(3, 1). We could also define O(𝑝, 𝑞) in more generality, but these groups
are not of interest for us.

O(3, 1) is known as the Lorentz group. It is composed of rotations, Lorentz boosts, and both
spatial and time reflections. Notice that O(3) is a subgroup of O(3, 1) formed by the elements with

Λ = (

1 0 0 0
0
0 𝑅
0

), (12)

where 𝑅 is an orthogonal matrix.
One could argue, correctly, that technically (12) is not an element of O(3). Indeed, SO(3) is

formed by 3 × 3matrices and (12) is obviously a 4 × 4matrix. Yet, it seems odd to not consider (12)
an element of O(3), given that matrices of that form behave precisely as elements of O(3). Let us
then give meaning to this.

Definition 4 [Homomorphism]:
Let 𝐺 and 𝐻 be groups. We say a function 𝜙∶ 𝐺 → 𝐻 is a homomorphism if, and only if,

𝜙(𝑔1)𝜙(𝑔2) = 𝜙(𝑔1𝑔2) for every 𝑔1, 𝑔2 ∈ 𝐺. ♠
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Notice we wrote simply 𝐺 rather than the tuple (𝐺, ⋅). This is common in group theory, and
perhaps in all of mathematics. Notice also that the definition of a homomorphism resembles that
of a linear transformation between vector spaces: both of them are mappings between two algebraic
structures of the same kind (either groups or vector spaces) that preserve the algebraic structure.
Hence, they are natural maps between these sorts of structures.

Just as in linear algebra, we can now define an isomorphism.

Definition 5 [Isomorphism]:
Let 𝐺 and𝐻 be groups and 𝜙∶ 𝐺 → 𝐻 be a homomorphism. If 𝜙 is bijective, it is said to be an

isomorphism. ♠

The inverse of a homomorphism, when it exists, is automatically a homomorphism. Isomor-
phisms between groups are analogous to isomorphims between vector spaces: they mean the two
groups (or vector spaces) are algebraically “equal” as far as the structure they preserve is concerned.
Two isomorphic groups can be understood as two copies of the same group.

Now we can give meaning to our previous idea: there is an injective homomorphism from
O(3) into O(3, 1). Or, alternatively, O(3, 1) has a subgroup that is isomorphic to O(3). We often
just make these statements briefly by saying O(3) is a subgroup of O(3, 1), where the necessary
homomorphisms are understood.

Just as we defined SO(𝑛) to get rid of the reflections ofO(𝑛), we can define SO(3, 1) to focus on a
smaller subgroupofO(3, 1). There is, however, a caveat: whileO(𝑛)has two connected components,
O(3, 1) has four. This is because in addition to spatial reflections we also have the independent time
reflections. If we reverse time and apply a spatial reflection, we get a transformation with positive
determinant, but which certainly is not a composition of “pure” rotations and boosts. Thus, we
provide the following definitions.

SO(3, 1) = {Λ ∈ 𝕄4; Λ
⊺𝜂Λ = 𝜂, detΛ = +1} (13)

and
SO+(3, 1) = {Λ ∈ 𝕄4; Λ

⊺𝜂Λ = 𝜂, detΛ = +1, Λ00 > 0}. (14)

Λ00 > 0 prevents time reflections, and when combined with detΛ = 1we end up ruling out spatial
reflections too. Hence, SO+(3, 1) is connected.

Restricting our attention to SO+(3, 1) also has physical motivation. It is well-known that the
weak interactions explicitly break parity (spatial reflection) and time reversal symmetries (see, e.g.,
Schwartz 2014). Hence, even in flat spacetime, O(3, 1) is not a fundamental symmetry of nature, but
SO+(3, 1) is. Of course, the group reflecting the spacetime symmetries is O(3, 1), but mathematical
simplicity also allows us to focus on SO+(3, 1). This is what we will do for the rest of these notes.

Finally, a comment about nomenclature is in place. SO(3, 1) is known as the proper Lorentz
group. The group

O+(3, 1) = {Λ ∈ 𝕄4; Λ
⊺𝜂Λ = 𝜂, Λ00 > 0} (15)

is known as the orthochronous Lorentz group, since it forbids time reversals. Finally, SO+(3, 1) =
SO(3, 1) ∩O+(3, 1) is the proper orthochronous Lorentz group, also called the restricted Lorentz
group.
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2.3 Poincaré Group

When discussing the Lorentz group we restricted our attention to linear isometries. Apart from
mathematical simplicity, there is no reason to make this restriction. Hence, we now consider the
full group of isometries of Minkowski spacetime. These are the transformations 𝑥𝜇 → 𝑥′𝜇 such that

𝜂𝜇𝜈
𝜕𝑥′𝜇

𝜕𝑥𝜌
𝜕𝑥′𝜈

𝜕𝑥𝜎 = 𝜂𝜌𝜎 . (16)

Notice this equation means the Jacobian 𝜕𝑥′𝜇

𝜕𝑥𝜌 must be a Lorentz transformation. Hence, we have
the differential equation

𝜕𝑥′𝜇

𝜕𝑥𝜌 = Λ𝜇𝜌. (17)

Integrating this equation leads us to

𝑥′𝜇 = Λ𝜇𝜌𝑥𝜌 + 𝑎𝜇, (18)

for an arbitrary vector 𝑎𝑎 ∈ ℝ4 which appears as an integration constant. If we omit the indices, we
can write the resulting transformation as

𝑥 → 𝑥′ = Λ𝑥 + 𝑎. (19)

This is known as a Poincaré transformation, and we denote (19) as (Λ, 𝑎). Once we restrict attention
to Λ ∈ SO+(3, 1), we get the group

ISO+(3, 1) = {(Λ, 𝑎); Λ ∈ SO+(3, 1), 𝑎 ∈ ℝ4}. (20)

This is known as the proper orthochronous Poincaré group, or restricted Poincaré group.
To find the group product of the restricted Poincaré group we perform two Poincaré transfor-

mations in sequence. Define

{
𝑥 → 𝑥′ = Λ𝑥 + 𝑎,
𝑥′ → 𝑥″ = Λ′𝑥′ + 𝑎′.

(21)

Then
𝑥 → 𝑥″ = Λ′Λ𝑥 + Λ′𝑎 + 𝑎′. (22)

Hence,
(Λ′, 𝑎′) ⊙ (Λ, 𝑎) = (Λ′Λ,Λ′𝑎 + 𝑎′), (23)

where ⊙ denotes the group product.
We have two interesting subgroups of ISO+(3, 1). Firstly, notice that

{(Λ, 0); Λ ∈ SO+(3, 1)} (24)

is isomorphic to th restricted Lorentz group SO+(3, 1). Furthermore,

{(1, 𝑎); 𝑎 ∈ ℝ4} (25)
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is isomorphic to (ℝ4, +), the group of translations. There are some interesting ideas connected to
these two subgroups.

Firstly, notice that given any (Λ, 𝑏) ∈ ISO+(3, 1) and 𝑎 ∈ ℝ4 we have that

(Λ−1, −Λ−1𝑏) ⊙ (1, 𝑎) ⊙ (Λ, 𝑏) = (Λ−1, −Λ−1𝑏) ⊙ (Λ, 𝑎 + 𝑏), (26a)
= (Λ−1Λ,Λ−1𝑎 + Λ−1𝑏 − Λ−1𝑏), (26b)
= (1, Λ−1𝑎) ∈ ℝ4, (26c)

where (Λ−1, −Λ−1𝑏) = (Λ, 𝑏)−1 and the inclusion in the last line implicitly assumes an isomorphism
between (25) and (ℝ4, +). This means that 𝑅4 is not only a subgroup of ISO+(3, 1), but a normal
subgroup.

Definition 6 [Normal Subgroup]:
Let 𝐺 be a group and𝑁 ⊆ 𝐺 be a subgroup. We say𝑁 is a normal subgroup, and write𝑁 ◁ 𝐺,

if it holds that for any 𝑛 ∈ 𝑁 and any 𝑔 ∈ 𝐺we have 𝑔−1𝑛𝑔 ∈ 𝑁. ♠

Normal subgroups are a particularly important class of subgroups, as discussed by Geroch
(1985), for example. For our purposes, it is useful to notice the following. Let 𝑔 ∈ 𝐺 (𝐺 a group)
and𝐻 ⊆ 𝐺 be a subgroup. Then define

𝑔−1𝐻𝑔 = {𝑔−1ℎ𝑔; ℎ ∈ 𝐻}. (27)

This is in general a new subgroup of 𝐺 that is isomorphic to𝐻. Hence, we get many copies of𝐻
inside 𝐺. For a normal subgroup, we have a uniqueness property in the sense that all of these copies
coincide, for 𝑔−1𝑁𝑔 ⊆ 𝑁 due to the very definition of normal subgroup.

Notice that SO+(3, 1) is not a normal subgroup. Indeed,

(Λ′−1, −Λ′−1𝑎) ⊙ (Λ, 0) ⊙ (Λ′, 𝑎) = (Λ′−1, −Λ′−1𝑎) ⊙ (ΛΛ′, Λ𝑎), (28a)
= (Λ′−1ΛΛ′, Λ′−1Λ𝑎 − Λ′−1𝑎), (28b)

and this is not in general an element of (24).
It is also interesting to notice that if we understand SO+(3, 1) andℝ4 as the subgroups given on

(24) and (25), then SO+(3, 1) ∩ℝ4 = {(1, 0)}, which is the subgroup composed solely by the neutral
element. Furthermore, notice that any element of ISO+(3, 1) can be written in the form

(Λ, 𝑎) = (Λ, 0) ⊙ (1, Λ−1𝑎). (29)

We thus write ISO+(3, 1) = SO+(3, 1)ℝ4, meaning that every Poincaré transformation is a transla-
tion followed by Lorentz transformation. Due toℝ4 being normal, this can also be rewritten as
ISO+(3, 1) = ℝ4 ⊙ SO+(3, 1)with

(Λ, 𝑎) = (1, 𝑎) ⊙ (Λ, 0). (30)

This sort of structure has a particular name in group theory.

Definition 7 [Semidirect Product]:
Let 𝐺 be a group with neutral element 𝑒,𝐻,𝑁 ⊆ 𝐺 subgroups, and𝑁 ◁ 𝐺. If

𝐺 = 𝐻𝑁 = {ℎ𝑛; ℎ ∈ 𝐻, 𝑛 ∈ 𝑁} (31)

and𝐻 ∩𝑁 = {𝑒}, then we say 𝐺 is the semidirect product of𝑁 and𝐻 and write 𝐺 = 𝐻 ⋉ 𝑁. ♠
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The notation𝐻⋉𝑁makes reference to the facts that, as a set,𝐺 = 𝐻×𝑁 and, as a group,𝑁 ◁ 𝐺.
As discussed by Robinson (1996), for example, semidirect products can also be defined for two

given groups and used as a way of building a third new group. For us, this internal definition will
be enough.

3 Symmetries in Curved Spacetimes
Now that we know how to characterize symmetries in terms of groups, the next step should be to
adapt this discussion to curved spacetimes. This will require us to develop some new geometric
language in order to appropriately formulate what constitutes a symmetry in a curved spacetime.
Furthermore, we will be able to provide a geometric, coordinate-free construction of the isometry
groups we previously discussed. Parts of this section are inspired by the book by Wald (1984, App.
C).

This section will rely considerably on a basic understanding of differential geometry as required
for general relativity. Examples of textbooks on differential geometry are the ones by Lee (2012)
and Tu (2011), but basic differential geometry is also reviewed in general relativity books such as the
ones by Hawking and Ellis (1973) and Wald (1984).

3.1 Pullbacks and Pushforwards

We now take an active point of view on diffeomorphisms. Rather than thinking about them as
mere changes of coordinates, we will think of them as active transformations that take one manifold
into another one and discuss how the structures on these manifolds transform. To understand this,
we will have to discuss some properties about smooth mappings between manifolds.

Let𝑀 and𝑁 be manifolds. Given a point 𝑝 ∈ 𝑀, we denote the space of tangent vectors to𝑀
at 𝑝 by 𝑇𝑝𝑀. Suppose we are given a smooth mapping 𝜙∶ 𝑀 → 𝑁. This mapping gives us some
structure to relate𝑀 and𝑁. Which sorts of relations can we derive from this?

Suppose first that we are given a smooth function 𝑓∶ 𝑁 → ℝ. We can “pullback” 𝑓 using 𝜙 by
defining a new map 𝜙∗𝑓∶ 𝑀 → ℝ through 𝜙∗𝑓 = 𝑓 ∘ 𝜙. This can be depicted in the diagram

𝑀 𝑁

ℝ
𝜙∗𝑓

𝜙

𝑓

We call 𝜙∗𝑓 the pullback of 𝑓 through 𝜙. This name comes from the fact that 𝜙 is “pulling back” the
function 𝑓 from𝑁 to𝑀.

Next suppose we have a vector 𝑣 ∈ 𝑇𝑝𝑀 (we sometimes omit the abstract indices to avoid
cluttering the notation in what follows). While we could pull back a function, we can “push
forward” this vector. Recall that a vector at 𝑝 is a linear map 𝑣 ∶ 𝒞∞(𝑝) → ℝ (𝒞∞(𝑝) being the space
of functions which are smooth at 𝑝) satisfying certain conditions so that it behaves as a directional
derivative (see, e.g., Lee 2012; Tu 2011). We can define a new vector 𝜙∗𝑣 ∈ 𝑇𝜙(𝑝)𝑁 by imposing that

𝜙∗𝑣(𝑓) = 𝑣(𝜙∗𝑓) = 𝑣(𝑓 ∘ 𝜙) (32)

for every 𝑓 ∈ 𝒞∞(𝜙(𝑝)). Diagrammatically this can be written as
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𝒞∞(𝑝) 𝒞∞(𝜙(𝑝))

ℝ

𝑣

𝜙∗

𝜙∗𝑣

where 𝜙∗ is the pullback map defined as 𝜙∗𝑓 = 𝑓 ∘ 𝜙.
Notice that the pushforward 𝜙∗ is a linear map 𝜙∗ ∶ 𝑇𝑝𝑀→ 𝑇𝜙(𝑝)𝑁 and can thus be interpreted as

the derivative of 𝜙 at 𝑝 in the usual sense of multivariable calculus (although it is now generalized to
manifolds). The pushforward of a smooth mapping is also known as the differential or the tangent
map.

This process does not stop at the level of vectors. Let 𝜔 ∈ 𝑇∗𝜙(𝑝)𝑁 be a covector at 𝜙(𝑝) ∈ 𝑁.
Recall that a covector in 𝑇∗𝜙(𝑝)𝑁 is a linear map 𝜔∶ 𝑇𝜙(𝑝)𝑁 → ℝ. We can pull back this covector to a
new covector 𝜙∗𝜔 ∈ 𝑇∗𝑝𝑀 by defining

𝜙 ∗ 𝜔(𝑣) = 𝜔(𝜙∗𝑣) (33)

for every 𝑣 ∈ 𝑇𝑝𝑀. We can write this in the diagram

𝑇𝑝𝑀 𝑇𝜙(𝑝)𝑁

ℝ
𝜙∗𝜔

𝜙∗

𝜔

where 𝜙∗ ∶ 𝑇𝑝𝑀→ 𝑇𝜙(𝑝)𝑁 is the pushforward.
Given a tensor 𝑇 of type (0, 𝑙) at 𝑝, we can also pull-it-back by defining 𝜙∗𝑇 through

𝜙∗𝑇(𝑣1, … , 𝑣𝑙) = 𝑇(𝜙∗𝑣1, … , 𝜙∗𝑣𝑙). (34)

Analogously, for a tensor 𝑇 of type (𝑘, 0)we define the pushforward through

𝜙∗𝑇(𝜔1, … , 𝜔𝑘) = 𝑇(𝜙∗𝜔1, … , 𝜙∗𝜔𝑘). (35)

This is consistent with our previous definition of pushforward of a vector due to the definition of
pullback of a covector.

Notice we thus get a number of relations between different structures defined on𝑀 and𝑁.
Nevertheless, we have quite some restrictions. We cannot push forward nor pull back a tensor of
mixed type, since we do not know how to pull back contravariant tensors and we do not know how
to push forward covariant tensors.

Suppose, however, that 𝜙∶ 𝑀 → 𝑁 is not only smooth, but actually a diffeomorphism. We
recall this means that 𝜙 is smooth, bijective, and has a smooth inverse. In particular this implies
that dim𝑀 = dim𝑁. In this case, we have the inverse mapping 𝜙−1 and we can exploit it to define
the pullbacks and pushforwards that 𝜙 cannot handle. Given a tensor 𝑇 of type (𝑘, 𝑙) at 𝑝 ∈ 𝑀, we
define

𝜙∗𝑇(𝜔1, … , 𝜔𝑘, 𝑣1, … , 𝑣𝑙) = 𝑇(𝜙∗𝜔1, … , 𝜙∗𝜔𝑘, (𝜙
−1)∗𝑣1, … , (𝜙−1)∗𝑣𝑙). (36)

The pullback 𝜙∗ is defined analogously, but since it holds that 𝜙∗ = (𝜙−1)∗ it suffices to work with
the pushforward.
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If we consider a diffeomorphism 𝜙∶ 𝑀 →𝑀, we get an interesting structure. If we are giving
a tensor field 𝑇, we can now consider the pushforward of the entire field, 𝜙∗𝑇. This leads us to a
new tensor field that can be compared to the original tensor field 𝑇. In general, these two tensor
fields will not be the same, even though they are related by a diffeomorphism. In coordinate-
parlance, the coordinate components of 𝑇 are preserved, but they are taken to 𝜙(𝑝) instead of
being kept at 𝑝. This is an ambiguity in the description, and hence it is understood as a gauge
symmetry. We get physical symmetries in the particular case in which 𝜙∗𝑇 = 𝑇, so that acting on the
spacetime with a diffeomorphism keeps everything unchanged—this is not a mere redundancy, but
an actual symmetry of the spacetime. The diffeomorphisms that keep the metric invariant, i.e., the
diffeomorphisms with 𝜙∗𝑔 = 𝑔, are called isometries.

3.2 Lie Derivatives

An interesting structure we can consider when dealing with diffeomorphisms is a one-parameter
group of diffeomorphisms. This is amap 𝜙∶ ℝ×𝑀 → 𝑀 such that 𝜙𝑡 ∶ 𝑀 →𝑀 is a diffeomorphism
for every 𝑡 ∈ ℝand the map 𝑡 → 𝜙𝑡 is such that 𝜙𝑡 ∘ 𝜙𝑠 = 𝜙𝑡+𝑠. Notice then that {𝜙𝑡}𝑡∈ℝ then has a
natural group structure.

Take a point 𝑝 ∈ 𝑀 and consider a one-parameter group of diffeomorphisms in𝑀. Notice that
𝛾𝑝(𝑡) = 𝜙𝑡(𝑝) defines a curve in𝑀—this is called an orbit of 𝜙𝑡. If we differentiate 𝛾𝑝 at 𝑡 = 0, we get
a vector 𝑣𝑝 ∈ 𝑇𝑝𝑀. Through this process we get a vector field 𝑣 associated to 𝜙𝑡 which is everywhere
parallel to the orbits of 𝜙𝑡. Inversely, given a smooth vector field 𝑣, it is always possible to find a
one-parameter group of diffeomorphisms in𝑀 whose orbits are all parallel to 𝑣. This is said to
be the flow of 𝑣. For details, see the books by Lee (2012, Chap. 9), Tu (2011, Chap. 14), and Wald
(1984, Sec. 2.2). We should mention that the one-parameter group of diffeomorphisms might not
be defined for all parameter values 𝑡 ∈ ℝ, but rather be defined only on a smaller interval. In any
case, it is always possible to find a local flow.

Suppose nowwewant to consider howa given tensor field𝑇 changes in spacetime. It is, of course,
useful to have a derivative of 𝑇 to analyze this variation. We would like to compute something like

d𝑇
d𝑡 ∣𝑝

∼ lim
𝑡→0

𝑇(𝑝 + 𝑡) − 𝑇(𝑝)
𝑡 . (37)

Of course, this equationmakes no sense. There is no vector space structure on the manifold for 𝑝+ 𝑡
tomake sense andwe cannot compare tensors at different points of themanifold. However, if we are
given a one-parameter group of diffeomorphisms {𝜙𝑡}with tangent vector field 𝑣 (or, equivalently,
if we are given the vector field and consider the one-parameter group of diffeomorphisms) we can
define

£𝑣𝑇
𝑎1⋯𝑎𝑘

𝑏1⋯𝑏𝑙
= lim
𝑡→0

𝜙∗−𝑡𝑇
𝑎1⋯𝑎𝑘

𝑏1⋯𝑏𝑙
− 𝑇𝑎1⋯𝑎𝑘𝑏1⋯𝑏𝑙
𝑡 . (38)

Notice that 𝜙∗−𝑡𝑇 = 𝜙𝑡∗𝑇 picks the tensor field at “𝑝 + 𝑡” and pulls it back to 𝑝. Hence, Eq. (38) gives
a precise mathematical meaning to Eq. (37). £𝑣 is known as the Lie derivative with respect to 𝑣𝑎.
Notice it is a linear map that takes smooth (𝑘, 𝑙)-tensor fields to smooth (𝑘, 𝑙)-tensor fields. The Lie
derivative preserves contractions and it can be shown that the Lie derivative obeys the Leibnitz rule
on tensor products,

£𝑣(𝑆 ⊗ 𝑇) = (£𝑣𝑆) ⊗ 𝑇 + 𝑆 ⊗ (£𝑣𝑇). (39)
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Notice that £𝑣𝑇 = 0 everywhere if, and only if, 𝜙𝑡 is a symmetry of 𝑇 for all 𝑇, i.e., 𝜙∗𝑡 𝑇 = 𝑇 for all 𝑡.
At a point 𝑝, notice that

(£𝑣𝑇
𝑎1⋯𝑎𝑘

𝑏1⋯𝑏𝑙
)
𝑝
= lim
𝑡→0

(𝜙∗−𝑡𝑇
𝑎1⋯𝑎𝑘

𝑏1⋯𝑏𝑙
)
𝑝
− (𝑇𝑎1⋯𝑎𝑘𝑏1⋯𝑏𝑙)𝑝
𝑡 = d

d𝑡 ∣𝑡=0
(𝜙∗−𝑡𝑇

𝑎1⋯𝑎𝑘
𝑏1⋯𝑏𝑙

)
𝑝
. (40)

In particular, consider the case of a scalar function. Then

(£𝑣𝑓)𝑝 =
d
d𝑡 ∣𝑡=0

(𝜙∗−𝑡𝑓)𝑝, (41a)

= d
d𝑡 ∣𝑡=0

(𝜙𝑡∗𝑓)𝑝, (41b)

= d
d𝑡 ∣𝑡=0

(𝑓 ∘ 𝜙𝑡)𝑝, (41c)

= 𝑣(𝑓)𝑝, (41d)

where the last step can be performed by choosing a coordinate system and employing the chain rule.
We thus learn that

£𝑣𝑓 = 𝑣(𝑓). (42)

Now that we know how the Lie derivative acts on functions, the next simplest step is to learn
how it acts on vector fields. To find that, introduce a coordinate system such that the parameter 𝑡
along the integral lines of 𝑣𝑎 is one of the coordinates, 𝑥1. In this manner, we have that

𝑣𝑎 = ( 𝜕
𝜕𝑥1

)
𝑎
. (43)

This corresponds to choosing the function 𝑥1 such that 𝑣(𝑥1) = 1, which clearly can always be done
in neighborhoods in which 𝑣𝑎 does not vanish.

In such a coordinate system, acting with 𝜙−𝑡 is equivalent to performing the coordinate trans-
formation 𝑥1 → 𝑥1 + 𝑡while holding the remaining coordinates fixed. The matrix components of
the pushforward 𝜙∗−𝑡 ∶ 𝑇𝑝𝑀→ 𝑇𝜙−𝑡(𝑝)𝑀 are then given in the coordinate basis by

(𝜙∗−𝑡)
𝜇
𝜈 = 𝛿𝜇𝜈. (44)

Hence, this means that

(𝜙∗−𝑡𝑇
𝜇1⋯𝜇𝑘

𝜈1⋯𝜈𝑙)(𝑥
1, … , 𝑥𝑛) = 𝑇𝜇1⋯𝜇𝑘𝜈1⋯𝜈𝑙(𝑥

1 + 𝑡, … , 𝑥𝑛). (45)

Using this in the expression for the Lie derivative, Eq. (38) on the previous page, we conclude that
in this coordinate system

£𝑣𝑇
𝜇1⋯𝜇𝑘

𝜈1⋯𝜈𝑙 =
𝜕𝑇𝜇1⋯𝜇𝑘𝜈1⋯𝜈𝑙

𝜕𝑥1
. (46)

Notice that using this expression it is particularly simple to prove the validity of the Leibnitz rule.
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Using this general expression, we see that given a vector field 𝑤𝑎 we have, in this coordinate
system adapted to 𝑣𝑎,

£𝑣𝑤
𝜇 =

𝜕𝑤𝜇

𝜕𝑥1
. (47)

Similarly, we can compute the commutator1 [𝑣, 𝑤]𝜇 and find that

[𝑣, 𝑤]𝜇 =
𝜕𝑤𝜇

𝜕𝑥1
(48)

too. Hence, we conclude that in this coordinate system we have

£𝑣𝑤
𝜇 = [𝑣, 𝑤]𝜇. (49)

Since this equation is covariant and both quantities are defined in a coordinate-independentmanner,
we can conclude that

£𝑣𝑤
𝑎 = [𝑣, 𝑤]𝑎 (50)

as a tensor equality.
Having the expressions for the Lie derivatives of scalars and vector fields, we can derive all other

cases. These formulae are more easily expressed in terms of derivative operators, so that is what we
will do. As an example, let us consider the Lie derivative for one-forms. Given some one-form 𝜇𝑎
and a vector field 𝑤𝑎, we have that

£𝑣(𝜇𝑎𝑤
𝑎) = 𝑣(𝜇𝑎𝑤

𝑎), (51a)
= 𝑣𝑏𝑤𝑎∇𝑏 𝜇𝑎 + 𝑣

𝑏𝜇𝑎∇𝑏 𝑤
𝑎. (51b)

This follows from using the expression of the Lie derivative for scalar functions. However, if we
instead used the Leibnitz rule and the expression for the Lie derivative of a vector field we would
have found

£𝑣(𝜇𝑎𝑤
𝑎) = 𝑤𝑎£𝑣𝜇𝑎 + 𝜇𝑎£𝑣𝑤

𝑎, (52a)
= 𝑤𝑎£𝑣𝜇𝑎 + 𝜇𝑎 [𝑣, 𝑤]

𝑎, (52b)
= 𝑤𝑎£𝑣𝜇𝑎 + 𝜇𝑎 𝑣

𝑏∇𝑏 𝑤
𝑎 − 𝜇𝑎𝑤

𝑏∇𝑏 𝑣
𝑎. (52c)

Bringing everything together and solving for 𝑤𝑎£𝑣𝜇𝑎 we find that

𝑤𝑎£𝑣𝜇𝑎 = 𝑣𝑏𝑤𝑎∇𝑏 𝜇𝑎 + 𝜇𝑎𝑤
𝑏∇𝑏 𝑣

𝑎 (53)

for all 𝑤𝑎, and therefore it follows that

£𝑣𝜇𝑎 = 𝑣𝑏∇𝑏 𝜇𝑎 + 𝜇𝑏∇𝑎 𝑣
𝑏. (54)

The general expression for an arbitrary tensor field can be obtained by induction. One finds
that

£𝑣𝑇
𝑎1⋯𝑎𝑘

𝑏1⋯𝑏𝑙
= 𝑣𝑐∇𝑐 𝑇

𝑎1⋯𝑎𝑘
𝑏1⋯𝑏𝑙

−
𝑘
∑
𝑖=1

𝑇𝑎1⋯𝑐⋯𝑎𝑘𝑏1⋯𝑏𝑙∇𝑐 𝑣
𝑎𝑖 +

𝑙
∑
𝑗=1

𝑇𝑎1⋯𝑎𝑘𝑏1⋯𝑐⋯𝑏𝑙∇𝑏𝑗 𝑣
𝑐. (55)

This expression holds for any derivative operator (see Wald 1984, Sec. 3.1), not only for the Levi-
Civita connection.

1Recall that the commutator of two vector fields 𝑣𝑎 and 𝑤𝑎 is the vector field [𝑣, 𝑤]𝑎 such that [𝑣, 𝑤](𝑓) = 𝑣(𝑤(𝑓)) −
𝑤(𝑣(𝑓)). Using a derivative operator, we can write [𝑣, 𝑤]𝑎 = 𝑣𝑏∇𝑏 𝑤

𝑎 − 𝑤𝑏∇𝑏 𝑣
𝑎.
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3.3 Conformal Killing Vector Fields

At this stage, we are ready to discuss an important class of concepts: Killing vector fields and
conformal Killing vector fields.

We begin by giving meaning to the term “conformal”. A conformal transformation is a trans-
formation that, in some sense, preserves angles. Within differential geometry and general relativity,
a conformal transformation is a smooth map such that 𝜙∗𝑔𝑎𝑏 = Ω2𝑔𝑎𝑏 = 𝑔̃𝑎𝑏 for some (smooth)
function Ω > 0. Notice that angles are preserved in a specific sense: 𝑔𝑎𝑏 𝑘

𝑎𝑘𝑏 = 0 if, and only if,
𝑔̃𝑎𝑏 𝑘

𝑎𝑘𝑏 = 0. Therefore, under a conformal transformation of the metric, null vectors are preserved
and, as a consequence, so are the lightcones. This means therefore that the causal structure of
spacetime is preserved.

We previously mentioned that a diffeomorphism 𝜙∶ 𝑀 → 𝑀 such that 𝜙∗𝑔𝑎𝑏 = 0 is called
an isometry. There is a second interesting class of diffeomorphisms that “almost preserve” the
metric, known as conformal isometries. There are the diffeomorphisms such that 𝜙∗𝑔𝑎𝑏 = Ω2𝑔𝑎𝑏 for
some functionΩ > 0. Hence, a conformal isometry is a diffeomorphism that also happens to be a
conformal transformation.

Suppose now we are given a one-parameter group of conformal isometries (regular isometries
then become a particular case). We surely must have that

£𝑣𝑔𝑎𝑏 = 𝜆𝑔𝑎𝑏 (56)

for some function 𝜆 yet to be determined (and that should vanish for a regular isometry). Using
Eq. (55) on the preceding page for a derivative operator with ∇𝑎 𝑔𝑏𝑐 = 0, we find that

£𝑣𝑔𝑎𝑏 = ∇𝑎 𝑣𝑏 + ∇𝑏 𝑣𝑎 (57)

and Eq. (56) becomes
∇𝑎 𝑣𝑏 + ∇𝑏 𝑣𝑎 = 𝜆𝑔𝑎𝑏 . (58)

For general 𝜆, this is known as the conformal Killing equation. For 𝜆 = 0 (corresponding to regular
isometries rather than conformal isometries) this is known as the Killing equation.

Assuming spacetime is 𝑛-dimensional and contracting both sides of the conformal Killing
equation with 𝑔𝑎𝑏 leads to

2∇𝑎 𝑣
𝑎 = 𝑛𝜆, (59)

which establishes the value of 𝜆. Hence, the conformal Killing equation becomes

∇𝑎 𝑣𝑏 + ∇𝑏 𝑣𝑎 =
2
𝑛(∇𝑐 𝑣

𝑐)𝑔𝑎𝑏 . (60)

Notice that Killing vector fields are infinitesimal generators of isometries, so they capture—in
an infinitesimal sense—what are the symmetries of the metric. Conformal Killing vector fields are a
bit more generous and consider the conformal symmetries of the metric.

In a curved spacetime, symmetries correspond to the integral lines of complete Killing vector
fields, where “complete” means that their integral lines (i.e., their flow) is defined for all times. The
symmetry group of the spacetime is a subgroup of the group composed by all diffeomorphisms,
Diff(𝑀) (the group product is the composition of maps). As an example, we say that a spacetime is
spherically symmetric when the group of isometries has a subgroup isomorphic to SO(3).
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Figure 3.1: Diagram for construction of stereographic coordinates. One picks a point in the sphere and
connects it to the north pole. One follows the line determined in this manner until it intercepts
the 𝑥𝑦-plane, at which point one records the coordinates 𝑥 and 𝑦 of the intersection. The coordinates
attributed to the point in the sphere are then 𝜁 = 𝑥 + 𝑖𝑦 and its conjugate 𝜁̄. This corresponds to
𝜁 = 𝑒𝑖𝜙 cot( 𝜃2 ).

3.4 Case Study: Conformal Isometries on a Sphere

As a case study, let us consider what are the isometries and the conformal isometries on the two-
sphere 𝕊2. This will be a convenient discussion for later.

To perform the calculations, it will be useful to employ some coordinate system. Spherical
coordinates2 (𝜃, 𝜙) are one of the options, but we will employ a different choice. Namely, we
choose to work with stereographic coordinates. This corresponds to defining a complex coordinate
𝜁 = 𝑒𝑖𝜙 cot( 𝜃2). Geometrically this construction is illustrated on Fig. 3.1. One draws the sphere as
the unit sphere in three dimensions and traces lines from the north pole to different points of the
sphere. Given a point on the sphere, the line from it to the north pole can be extended untill it
crosses the 𝑥𝑦-plane, marking the coordinate 𝜁 = 𝑥 + 𝑖𝑦 at the crossing point. In this manner, each
point in the sphere is mapped to a point in the plane, and the north pole is mapped to infinity. It is
worth mentioning that this is a way of viewing the sphere as the Riemann sphere ℂ ∪ {∞}.

The round metric on the sphere is given by

d𝕊2 = d𝜃2 + sin2 𝜃 d𝜙2 . (61)

In stereographic coordinates, we get

d𝕊2 = 2𝛾𝜁𝜁̄ d𝜁 d𝜁̄ , (62a)

2In our conventions, 𝜃 is the polar angle and 𝜙 is the azimuthal angle.
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with

𝛾𝜁𝜁̄ = 2
(1 + 𝜁𝜁̄)2

. (62b)

The Christoffel symbols for this metric in stereographic coordinates are

Γ𝜁𝜁𝜁 = − 2𝜁̄
1 + 𝜁𝜁̄

and Γ𝜁̄
𝜁̄𝜁̄
= − 2𝜁

1 + 𝜁𝜁̄
. (63)

Notice that for a vector field 𝑌𝑎 to be real, it is necessary that 𝑌𝜁̄ = 𝑌𝜁.
Let us then consider the conformal Killing equation. A vector field 𝑌𝑎 is a conformal Killing

vector field on the sphere if it satisfies

∇𝑎 𝑌𝑏 + ∇𝑏 𝑌𝑎 = ∇𝑐 𝑌
𝑐𝛾𝑎𝑏 , (64)

where 𝛾𝑎𝑏 is the round metric. It is convenient to write this in the form

𝛾𝑏𝑐 ∇𝑎 𝑌
𝑐 + 𝛾𝑎𝑐 ∇𝑏 𝑌

𝑐 = ∇𝑐 𝑌
𝑐𝛾𝑎𝑏 . (65)

In components, this expression is given by

𝜕𝜁𝑌
𝜁̄ = 0, (66a)

𝜕𝜁̄𝑌
𝜁 = 0, (66b)

𝜕𝜁̄𝑌
𝜁̄ + Γ𝜁̄

𝜁̄𝜁̄
𝑌𝜁̄ + 𝜕𝜁𝑌

𝜁 + Γ𝜁𝜁𝜁𝑌
𝜁 = ∇𝑐 𝑌

𝑐. (66c)

Eq. (66c) is trivial. The derivatives in Eqs. (66a) and (66b) should be understood as Wirtinger
derivatives, which for 𝜁 = 𝑥 + 𝑖𝑦 are defined as the linear operators

𝜕
𝜕𝜁 = 1

2(
𝜕
𝜕𝑥 − 𝑖 𝜕𝜕𝑦) and 𝜕

𝜕𝜁̄
= 1
2(

𝜕
𝜕𝑥 + 𝑖 𝜕𝜕𝑦). (67)

As a consequence, the equation
𝜕𝑓
𝜕𝜁̄

= 0 (68)

is equivalent to the Cauchy–Riemann equations, and thus it means that 𝑓 is an analytic function of
𝜁. Hence, Eqs. (66a) and (66b) imply that 𝑌𝜁 (𝑌𝜁̄) is an analytic function of 𝜁 (𝜁̄).

Hence, the local Killing fields are characterized by linear combinations of fields with the form
𝑌𝜁 = 𝛼𝜁𝑛 for 𝛼 ∈ ℂ and 𝑛 ≥ 0 an integer. There is, however, a caveat: some of these fields may
not be global Killing vector fields (as we would need for a complete Killing vector field). This is
because the stereographic coordinate we are working with is only defined away from the north pole,
since 𝜁 = ∞ at the north pole. To avoid this, we define a new stereographic coordinate 𝜉 through
𝜉 = −𝑒𝑖𝜙 tan( 𝜃2). 𝜉 is then the coordinate antipodally related to 𝜁. These two coordinate systems are
related by

𝜉 = −1
𝜁̄
, (69)
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with an analogous expression for the conjugates. The line element in the 𝜉 coordinate is identical to
the expression in terms of the 𝜁 coordinate, and hence so are the results of the Killing equation: 𝑌𝜉
must be an analytic function of 𝜉.

Consider now the vector field defined by 𝑌𝜁 = 𝛼𝜁𝑛. When we change coordinates from 𝜁 to 𝜉,
we find that

𝑌𝜉 = (−1)𝑛𝛼̄
𝜉𝑛−2

. (70)

Since 𝑛 ≥ 0, this is only an analytic function of 𝜉 for 𝑛 ≤ 2.
Therefore, we find that there is a six-dimensional real space of possible conformal Killing vector

fields, which is spanned by 𝑌𝜁 = 1, 𝜁, 𝜁2, 𝑖, 𝑖𝜁, 𝑖𝜁2.
We then have a new question: are these vector fields complete?
Let us consider some curve that is everywhere parallel to the most general vector field with

𝑌𝜁 = 𝛼 + 𝛽𝜁 + 𝛾𝜁2 (71)

for 𝛼, 𝛽, 𝛾 ∈ ℂ. This curve is characterized by the differential equation

d𝜁
d𝑡 = 𝛼 + 𝛽𝜁 + 𝛾𝜁2 (72)

The full solution has the form
𝜁(𝑡) = 𝑎(𝑡)𝜁(0) + 𝑏(𝑡)

𝑐(𝑡)𝜁(0) + 𝑑(𝑡) , (73)

where the specific functional form of 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), and 𝑑(𝑡) depends on the values of 𝛼, 𝛽, 𝛾, and the
general case is particularly complicated. One can choose their normalization such that 𝑎𝑑 − 𝑏𝑐 = 1.
Such a transformation is known as aMöbius transformation, and these transformations correspond
precisely to the conformal transformations on the Riemann sphere.

Notice that a Möbius transformation

𝜁 → 𝑎𝜁 + 𝑏
𝑐𝜁 + 𝑑 (74)

with 𝑎𝑑 − 𝑏𝑐 = 1 has precisely one pole at 𝜁 = −𝑑𝑐 and one zero at 𝜁 = − 𝑏𝑐 . They are analytic in the
complex plane and are a diffeomorphism of the Riemann sphere onto itself.

The (non-conformal) Killing vector fields on the sphere are the conformal Killing vector fields
which satisfy the extra condition ∇𝑎 𝑌

𝑎 = 0. Imposing this condition on a vector field with the
form (71) we conclude that a (non-conformal) Killing vector field has the form (71) with the extra
conditions that 𝛽 + 𝛽̄ = 0 and 𝛾 = 𝛼̄. These are three real constraints, so we get a three-dimensional
real space of Killing vector fields.

What is the group of conformal isometries on the sphere? To answer this question, we must
study how two Möbius transformations compose. Consider two consecutive Möbius transforma-
tions

𝜁 → 𝜁′ = 𝑎𝜁 + 𝑏
𝑐𝜁 + 𝑑 and 𝜁′ → 𝜁″ = 𝑎′𝜁′ + 𝑏′

𝑐′𝜁′ + 𝑑′ . (75)

We want to express the coefficients of the resulting transformation

𝜁 → 𝜁″ = 𝑎″𝜁 + 𝑏″

𝑐″𝜁 + 𝑑″ (76)
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in terms of the original coefficients. We assume that

𝑎𝑑 − 𝑏𝑐 = 𝑎′𝑑′ − 𝑏′𝑐′ = 1. (77)

One can show that
(𝑎
″ 𝑏″

𝑐″ 𝑑″
) = (𝑎

′ 𝑏′

𝑐′ 𝑑′
)(𝑎 𝑏
𝑐 𝑑

), (78)

with
𝑎″𝑑″ − 𝑏″𝑐″ = 1. (79)

This is the product of two 2 × 2 complex matrices with unit determinant. Furthermore, notice
that the Möbius transformation corresponding to the matrix 𝐴 is the same Möbius transformation
corresponding to the matrix −𝐴. Hence, the group is the group SL(2, ℂ)/ℤ2: the group of 2 × 2
complex matrices with unit determinant up to sign. This may seem complicated, but it turns out
that

SL(2, ℂ)/ℤ2 ≅ SO+(3, 1). (80)

Hence, the group of conformal isometries on the two-sphere is just the restricted Lorentz group.
From our analysis it is difficult to see this, but it turns out that the group of isometries on the

two-sphere is SO(3), as one would expect. This can be more easily seem through the language of
Lie algebras.

3.5 Case Study: Killing Isometries on Minkowski Spacetime

It is instructive to consider as a second case study the isometries inMinkowski spacetime. We should,
of course, recover the Poincaré transformations. While this time we are dealing only with isometries,
we are now in a four-dimensional manifold (as compared to a two-dimensional manifold), so the
system of differential equations becomes more difficult to solve.

The Killing equation is
∇𝑎 𝜉𝑏 + ∇𝑏 𝜉𝑎 = 0. (81)

In globally inertial Cartesian coordinates this expression becomes

𝜕𝜇 𝜉𝜈 + 𝜕𝜈𝜉𝜇 = 0. (82)

Consider Eq. (82) for 𝜇 = 𝜈 = 𝑡. This yields

𝜕𝑡 𝜉𝑡 = 0, (83)

and thus 𝜉𝑡 is time-independent. Picking 𝜇 = 𝑡 and 𝜈 = 𝑥, for example, leads to

𝜕𝑡𝜉𝑥 = −𝜕𝑥 𝜉𝑡 . (84)

Since the right-hand side is time-independent, so must be the left-hand side. Hence, 𝜉𝑥 must be at
most linear in 𝑡. More generally, 𝜉𝜇 can depend at most linearly on 𝑥𝜈 and it is independent of 𝑥𝜇.
Can there be crossed terms, i.e., terms of the form 𝑦𝑧, for example?
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Differentiate Eq. (82) on the previous page and apply it a few times to see that

𝜕𝜌 𝜕𝜇 𝜉𝜈 = −𝜕𝜌 𝜕𝜈𝜉𝜇 , (85a)
= −𝜕𝜈𝜕𝜌 𝜉𝜇 , (85b)
= +𝜕𝜈𝜕𝜇 𝜉𝜌 , (85c)
= +𝜕𝜇 𝜕𝜈𝜉𝜌 , (85d)
= −𝜕𝜇 𝜕𝜌 𝜉𝜈 , (85e)
= −𝜕𝜌 𝜕𝜇 𝜉𝜈 , (85f)

and thus
𝜕𝜌 𝜕𝜇 𝜉𝜈 = 0, (86)

meaning crossed terms are not allowed.
Taking all of this into consideration, we have that

𝜉𝑡 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧, (87)

for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, with similar expressions for the other components. Imposing Eq. (82) on the
preceding page for this ansatz leads to relations between the constant coefficients of the different
components 𝜉𝜇 . At the end of the say, one gets the ten-dimensional vector space spanned by the
Killing vectors given by

𝑃𝑎𝑡 = ( 𝜕𝜕𝑡)
𝑎
, 𝑃𝑎𝑥 = ( 𝜕𝜕𝑥)

𝑎
, 𝑃𝑎𝑦 = ( 𝜕𝜕𝑦)

𝑎
, 𝑃𝑎𝑧 = ( 𝜕𝜕𝑧)

𝑎
, (88a)

𝐽𝑎𝑥 = −𝑧( 𝜕𝜕𝑦)
𝑎
+ 𝑦( 𝜕𝜕𝑧)

𝑎
, 𝐽𝑎𝑦 = −𝑥( 𝜕𝜕𝑧)

𝑎
+ 𝑧( 𝜕𝜕𝑥)

𝑎
, 𝐽𝑎𝑧 = −𝑦( 𝜕𝜕𝑥)

𝑎
+ 𝑥( 𝜕𝜕𝑦)

𝑎
, (88b)

𝐾𝑎𝑥 = 𝑥( 𝜕𝜕𝑡)
𝑎
+ 𝑡( 𝜕𝜕𝑥)

𝑎
, 𝐾𝑎𝑦 = 𝑦( 𝜕𝜕𝑡)

𝑎
+ 𝑡( 𝜕𝜕𝑦)

𝑎
, 𝐾𝑎𝑧 = 𝑧( 𝜕𝜕𝑡)

𝑎
+ 𝑡( 𝜕𝜕𝑧)

𝑎
. (88c)

Using methods we do not cover in these notes (namely, the theory of Lie algebras) one can show
that the diffeomorphisms generated by these ten vector fields constitute precisely the Poincaré group
ISO+(3, 1). The vectors 𝑃𝑎𝜇 generate translations, 𝐽𝑎𝑖 generate rotations, and𝐾𝑎𝑖 generate boosts.

4 Asymptotically Flat Spacetimes
Our goal in these lectures is to understand the asymptotic symmetries of asymptotically flat space-
times. For that end, we must have a good understanding of what we mean by “asymptotic” and
what we mean by “asymptotically flat”. The goal of this section is to give attention to these terms
and discuss how they are currently understood in general relativity.

4.1 Infinity in Minkowski Spacetime

We shall begin by giving meaning to “infinity” in Minkowski spacetime. Our approach is similar in
nature to the one by Wald (1984, Chap. 11).
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To begin our discussion, let us choose a system of coordinates to better visualize what we
are doing. Spherical coordinates turn out to be convenient for our discussion, so we write the
Minkowski line element as

d𝑠2 = − d𝑡2 + d𝑟2 + 𝑟2 d𝕊2 , (89)

where d𝕊2 stands for the round metric on the sphere.
When we talk about what happens “at infinity” in Minkowski spacetime, there are three pos-

sibilities we could be considering. Namely, we could be thinking about taking the limit 𝑡 → ±∞
or taking the limit 𝑟 → +∞. This, however, is not a clear enough picture of what infinity is in
Minkowski spacetime. For instance, we do not know if taking 𝑟 → +∞ toward different directions
will lead to the same result. Furthermore, we could take 𝑟 → +∞while holding 𝑡 constant or while
holding 𝑢 = 𝑡−𝑟 constant, for example, and this turns out to lead to very different results. Therefore,
we must be more careful.

For concreteness, let us assume we want to take the limit 𝑟 → +∞ at constant 𝑢 = 𝑡 − 𝑟. In this
case, it makes sense to change coordinates so we use 𝑢 rather than 𝑡when writing the line element.
Doing so leads us to the line element

d𝑠2 = − d𝑢2 − 2 d𝑢d𝑟 + 𝑟2 d𝕊2 . (90)

At this point we could attempt to take the limit 𝑟 → +∞ in order to understandwhat is the geometry
of infinity in Minkowski spacetime. Nevertheless, there is a difficulty in doing so: this limit leads to
a divergence in the metric. This divergence is not due to a bad choice of coordinates, because it has
geometrical (and hence physical) implications. Namely, the area of a sphere with radius 𝑟 diverges
as we take 𝑟 → +∞. Hence, it is not possible to take this limit for this metric.

Despite this difficulty, we would still like to understand the structure of infinity. To do so, we
will make a new change of coordinates. We define a new coordinate 𝑙 = 1

𝑟 , which turns the line
element into

d𝑠2 = − d𝑢2 + 2𝑙−2 d𝑢 d𝑙 + 𝑙−2 d𝕊2 . (91)

A few comments are in order. Firstly, notice that the physical region of Minkowski spacetime
corresponds to 𝑙 > 0—the limiting case 𝑙 = 0 would in principle be infinity (in the sense that
𝑟 → +∞ as 𝑙 → 0+) and 𝑙 < 0 is non-physical. Secondly, this coordinate patch does not cover the
points with 𝑟 = 0, since 𝑙 diverges there. Thirdly, notice that this was merely a coordinate change,
and taking the limit 𝑙 → 0+ is not any more possible than taking the limit 𝑟 → +∞was before.

Nevertheless, this new coordinate system seems to be “better behaved” at infinity. Namely, we
know infinity sits at 𝑙 = 0, which we can barely grasp. The only problemwe face now is the presence
of the 𝑙−2 factors in Eq. (91). To deal with them, we will take an apparently ad hoc approach. We
will define a new, unphysical metric 𝑔̃𝑎𝑏 through

𝑔̃𝑎𝑏 = 𝑙2𝜂𝑎𝑏 , (92)

where 𝜂𝑎𝑏 is the Minkowski metric. The line element for this new unphysical metric is now

d𝑠̃2 = −𝑙2 d𝑢2 + 2 d𝑢 d𝑙 + d𝕊2 . (93)
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This new unphysical metric has an advantage: it is well-behaved in the 𝑙 → 0+ limit. We can thus
describe the geometry of infinity by plugging in 𝑙 = 0 and getting the induced metric

d𝜎̃2 |𝑙=0 = 0 d𝑢2 + d𝕊2 , (94)

where we write 0 d𝑢2 explicitly as a reminder that this is a metric in a three-dimensional manifold.
We write d𝜎2 instead of d𝑠2 to make explicit that this is the induced metric. We can now consider
the behavior of tensor fields at infinity by perfoming suitable transformations of tensor fields on
Minkowski spacetime in order to map them from the original spacetime with metric 𝜂𝑎𝑏 to the
unphysical spacetime with metric 𝑔̃𝑎𝑏 and subsequently evaluating them at 𝑙 = 0. In this sense,
infinity becomes a set of regular points.

Let us summarize what is the trick we just employed and notice some of the ideas that went in
performing it. We had an issue with the metric 𝜂𝑎𝑏 because it diverged in the region we wanted to
consider—namely, infinity. Nevertheless, we found a function 𝑙 that conveniently vanishes precisely
at the region in which the metric diverges. We then noticed that the metric 𝑔̃𝑎𝑏 = 𝑙2𝜂𝑎𝑏 is finite in the
region we wanted to study. Hence, we decided to let go of 𝜂𝑎𝑏 and work with 𝑔̃𝑎𝑏 instead, at least
while we are considering the behavior at infinity. By making appropriate transformations of tensor
fields so they can be understood as being defined in the spacetime given by 𝑔̃𝑎𝑏 , we can analyze their
behavior at infinity by simply evaluating them at infinity, which became a set of regular points in
the new unphysical spacetime.

It is important to emphasize that 𝑔̃𝑎𝑏 is an unphysical metric. It is not the metric that describes
the spacetime geometry as measured in experiments. It is defined as a mathematical construction
that allows us to “bring in infinity” and consider it as a regular point. In general, 𝑔̃𝑎𝑏 will not even
satisfy the Einstein field equations, so it is not an accurate model of the bulk spacetime3 we are
trying to describe. Nevertheless, the price we pay to study infinity is that we are forced to work with
𝑔̃𝑎𝑏 rather than with the physical metric 𝜂𝑎𝑏 .

This procedure is called a conformal compactification. It is conformal because we have a
transformation of the form 𝜂𝑎𝑏 → Ω2𝜂𝑎𝑏 for some functionΩwhich is positive in the bulk spacetime.
It is a compactification because it transforms a spacetime that is not compact into a spacetime that
is compact. There are, however, better choices of compactification. In our construction, we defined
a functionΩ = 𝑙 which was not defined at some points of spacetime—namely those with 𝑟 = 0.
We can, however, define a conformal compactification that takes proper account of all points in
Minkowski spacetime.

To that end, wewillmake somemore changes of coordinates. We begin by defining the advanced
time coordinate 𝑣 = 𝑡 + 𝑟. This is in contrast to the retarded time coordinate 𝑢 = 𝑡 − 𝑟. Both of these
coordinates are depicted on Fig. 4.1 on the following page. In terms of retarded and advanced times
and angular coordinates the Minkowski line element is written as

d𝑠2 = − d𝑢 d𝑣 + 1
4(𝑣 − 𝑢)

2 d𝕊2 . (95)

It is convenient to work with null coordinates—i.e., coordinates with

𝜂𝑎𝑏 (
𝜕
𝜕𝑢)

𝑎
( 𝜕𝜕𝑢)

𝑏
= 0 (96)

3By “bulk” we mean the interior of the spacetime, or the set of all “finite” points. This contrasts with infinity, which
would be the “boundary” of spacetime.
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𝑟 = 0

𝑣 = constant

𝑣 = constant

𝑢 = constant

𝑢 = constant

𝑡

Figure 4.1: Illustration, with one dimension suppressed, of the physical meaning of the null coordinates 𝑢
and 𝑣. Surfaces of constant 𝑢 are outgoing spherical “waves”, while surfaces of constant 𝑣 are their
incoming analogues. The figure is based on Hawking and Ellis 1973, Fig. 12.i.

(and similarly for 𝑣)—because we can compactify each of these coordinates separately and still get
null coordinates. This will allow us at the end to draw a diagram in which all (radial) null geodesics
are at 45° angles, which is convenient for reading the causal structure of spacetime.

We will now compactify the coordinates of Eq. (95) on the previous page. Our goal is to take
the coordinates 𝑢 and 𝑣which obey

−∞ < 𝑢 ≤ 𝑣 < +∞ (97)

andmap them to coordinates with range in a finite interval. This can be done bymeans of a function
𝑓∶ (𝑎, 𝑏) → ℝwhere −∞ < 𝑎 < 𝑏 < +∞ and such that 𝑓 is injective. Two examples are the functions

artanh ∶ (−1, 1) → ℝ (98)

and

tan ∶ (−𝜋2 , +
𝜋
2 ) → ℝ, (99)

but one could also work with other options. We will use the tangent function. We define new
compactified null coordinates𝑈 and 𝑉 through

𝑢 = tan𝑈 and 𝑣 = tan𝑉. (100)

Notice that this maps the infinite range of 𝑢 and 𝑣 tp a finite range of𝑈 and 𝑉. Namely,𝑈 and 𝑉
satisfy

−𝜋2 < 𝑈 ≤ 𝑉 < +𝜋2 . (101)
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The middle inequality holds because tan is crescent and 𝑢 ≤ 𝑣.
In our new choice of coordinates, we have the line element

d𝑠2 = sec2𝑈 sec2 𝑉[− d𝑈 d𝑉 + 1
4 sin2(𝑉 − 𝑈) d𝕊2]. (102)

At this stage, our coordinates are already compactified. We just need to get rid of the divergences of
the metric at infinity. To do so, we perform a conformal transformation. As Eq. (102) suggests, we
take

Ω = 2 cos𝑈 cos𝑉 (103)

so that we define 𝑔̃𝑎𝑏 = Ω2𝜂𝑎𝑏 and get

d𝑠̃2 = −4 d𝑈 d𝑉 + sin2(𝑉 − 𝑈) d𝕊2 . (104)

For convenience, we finally introduce coordinates 𝑇 and 𝑅 through

𝑇 = 𝑈 + 𝑉 and 𝑅 = 𝑉 − 𝑈 (105)

which mimics (up to normalization) 𝑢 = 𝑡 − 𝑟 and 𝑣 = 𝑡 + 𝑟. This finally leads to the unphysical
metric

d𝑠̃2 = − d𝑇2 + d𝑅2 + sin2 𝑅 d𝕊2 . (106)

The physical region corresponds to the limits

−𝜋 < 𝑇 − 𝑅 ≤ 𝑇 + 𝑅 < +𝜋, (107)

which in particular implies 𝑅 ≥ 0.
Eq. (106) is the line element for the Einstein static universe (Choquet-Bruhat 2015, Sec. VII.2.1).

This spacetime has topology ℝ × 𝕊3 and it is a solution to the Einstein field equations, but for
a perfect fluid stress tensor with a cosmological constant component. This is, of course, a very
different scenario from the Minkowski metric, which is a vacuum solution. This greatly exemplifies
that the unphysical metric is really unphysical.

We can make a plot of the region given on Eq. (107). Plotting 𝑅 on the horizontal axis and 𝑇
on the vertical axis, we get the diagram shown in Fig. 4.2 on the next page. This is known as the
Penrose diagram for Minkowski spacetime. It is a finite drawing of all of Minkowski spacetime,
with each point representing a sphere 𝕊2. We can “double” the diagram by letting each point be a
hemisphere, and this version of the diagram is interesting because it can be “wrapped around the
Einstein static universe”, as shown in Fig. 4.3 on page 26.

The region 𝑇 + 𝑅 = +𝜋 of the Penrose diagram corresponds to the limits 𝑟 → +∞ at constant
𝑢. Each direction leads to a different point and each different value of 𝑢 leads to a different point
as well. In total, we get a three-dimensional manifoldℐ+ with topologyℝ × 𝕊2: ℝ corresponds to
the values of 𝑢 and 𝕊2 to the possible directions. Similarly, 𝑇 − 𝑅 = −𝜋 is the region ℐ− of limits
𝑟 → +∞ under constant 𝑣 and it also has topologyℝ × 𝕊2 for analogous reasons. ℐ+ is known as the
future null infinity and the symbolℐ+ is pronounced “scri plus”. ℐ− (“scri minus”) is the past null
infinity.

The point 𝑇 = 0 with 𝑅 = 𝜋 is at the boundary between ℐ+ and ℐ−. Notice this is indeed a
point: for 𝑅 = 𝜋we are at one of the poles of the three-sphere, which is thus a single point. This
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ℐ+

ℐ−

𝑖0

𝑖+

𝑖−

𝑇 −
𝑅
= −
𝜋

𝑇 + 𝑅
= 𝜋

𝑅
=
0

Figure 4.2: Penrose diagram of Minkowski spacetime.

point, denoted 𝑖0, is known as spatial infinity and it corresponds to the limits 𝑟 → +∞ at constant 𝑡.
Notice that, since this is a single point, limits in different directions all coincide.

We still have two interesting points. 𝑇 = 𝜋 with 𝑅 = 0 is at the future of ℐ+. This is located
at the other pole of the three-sphere and thus is also corresponds to a single point, denoted 𝑖+

and known as future timelike infinity. This is the limit 𝑡 → +∞ at constant 𝑟, and there is no
direction-dependence either. Similar comments are in order for the past timelike infinity 𝑖−, located
at 𝑇 = −𝜋with 𝑅 = 0.

All timelike curves start at 𝑖− and end at 𝑖+. All null curves start at ℐ− and end at ℐ+. All
spacelike curves start and end at 𝑖0. Fig. 4.4 on page 27 illustrates some curves of interest on the
Penrose diagram for Minkowski spacetime.

Conformal compactifications were introduced in general relativity by Penrose (1963, 1965), and
we shall extensively use them in the rest of these notes.

We should mention an important property of the conformal transformations we are employing
to find an unphysical spacetime. While it is true that 𝑔̃𝑎𝑏 is unphysical it is important to notice that
a vector 𝑘𝑎 will satisfy 𝑔̃𝑎𝑏 𝑘

𝑎𝑘𝑏 = 0 for 𝑔̃𝑎𝑏 = Ω2𝑔𝑎𝑏 if, and only if, 𝑔𝑎𝑏 𝑘
𝑎𝑘𝑏 = 0. As a consequence,

conformal transformations preserve lightcones, and thus they preserve the causal structure of
spacetime. This means that Penrose diagrams are useful tools for analyzing the causal structure of
spacetime.

Notice also that in the Penrose diagram for Minkowski spacetime all radial light rays move at
45° angles. This allows us to read the causal structure of Minkowski spacetime directly from its
Penrose diagram. This is the reason why these sorts of diagrams are popular in general relativity.
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𝑖+

𝑖−

𝑖0

ℐ+

ℐ−

𝑅 = 0
𝑅 = 𝜋

𝑇 = −𝜋

𝑇 = 0

𝑇 = +𝜋

Figure 4.3: Minkowski spacetime embedded in the Einstein static universe. Since the Einstein static universe
has the topology ℝ × 𝕊3 we represent it as a cylinder. The Penrose diagram for Minkowski
spacetime is wrapped around the Einstein cylinder.

4.2 Asymptotically Flat Spacetimes

At this point we would like to adapt our discussion of infinity to more general spacetimes. This is
related to defining what is an asymptotically flat spacetime.

In a general spacetime, the structure of infinity could bemuch different from that ofMinkowski
spacetime. Some spacetimes might not even get to infinity. Consider a dust-filled closed Friedman–
Lemaître–Robertson–Walker universe, for example. Such a universe begins at a Big Bang, ends
at a Big Crunch, and has compact spatial sections (it is spatially a sphere). Therefore, we never
really get to infinity. We either reach the north or south pole of the spatial spheres or we reach the
singularities at the beginning or end of spacetime.

We want to consider spacetimes that asymptotically look like Minkowski spacetime. Hence,
their behavior at infinity should somehow resemble that of Minkowski spacetime. We know
Minkowski spacetime has five different infinities, so there are five different meanings we can give to
“asymptotically flat”, plus combinations of them.

What are reasonable conditions we can impose? It makes sense to consider spacetimes in
which the gravitational field falls off away from a central distribution of matter, so we have an
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(a) Curves of constant 𝑟. (b) Curves of constant 𝑡.

(c) Curves of constant 𝑢. (d) Curves of constant 𝑣.

Figure 4.4: Different curves represented in the Penrose diagram for Minkowski spacetime. Vertical curves
are curves with constant 𝑟. Horizontal curves are curves with constant 𝑡. Diagonal lines have
constant 𝑢 (outgoing) or 𝑣 (incoming).
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asymptotically flat spacetime at null and spatial infinities. There is less interest in spacetimes which
are asymptotically flat at timelike infinities, though, because this means the spacetime becomes flat
at late or early times, so the matter content has vanished. While there are situations in which this
can be interesting, these are more specific spacetimes that often will not be what we are looking for.
Hence, one often defines asymptotic flatness at spatial and null infinities.

Our definition will actually be even simpler than that. For our purposes, a single null infinity
will typically be enough. Hence, we will discuss asymptotically flat spacetimes at future null infinity
(the past case is analogous). We follow the book byDappiaggi, Moretti, and Pinamonti (2017, Chap.
2), which also discusses the timelike case. For the more complete case which involves spatial infinity,
see the book by Wald (1984, Chap. 11).

We will first discuss in a handwaving way each of the axioms that we will employ and then state
the final definition. The goal is to motivate the definition. We will find a definition by mimicking
and generalizing the construction of conformal infinity we performed for Minkowski spacetime.

We start with a spacetime (𝑀, 𝑔𝑎𝑏 ). We want to enforce conditions on this spacetime so that
it can be considered asymptotically flat. Our construction should be coordinate-independent in
nature, so that it actually captures the physical aspects of spacetime rather than spurious coordinate
behaviors.

Our first demand will be that there is an unphysical spacetime (𝑀̃, 𝑔̃𝑎𝑏 ) which conformally
extends (𝑀, 𝑔𝑎𝑏 ). This unphysical spacetime will play the same role that the Einstein static universe
played for Minkowski spacetime.

We need a way of injecting𝑀 into 𝑀̃. Before, we had a natural way of viewing Minkowski
spacetime as a submanifold of the Einstein static universe, which was given by the coordinate
restrictions on the Einstein universe. In our more general case, this role is played by a function
𝜓∶ 𝑀 → 𝑀̃ that should satisfy some convenient properties. In practice, it is convenient to choose
𝜓 to be an embedding. Let us define this by following Tu (2011).

Definition 8 [Immersion]:
Let 𝜓∶ 𝑀 → 𝑀̃ be a smooth map between the manifolds𝑀 and 𝑀̃. We say 𝜓 is an immersion

if, and only if, 𝜓∗ ∶ 𝑇𝑝𝑀→ 𝑇𝜓(𝑝)𝑀̃ is injective for all 𝑝 ∈ 𝑀. ♠

Definition 9 [Embedding]:
Let𝑀 and 𝑀̃ be smooth manifolds. An immersion 𝜓∶ 𝑀 → 𝑀̃ is called an embedding if, and

only if, it is injective and 𝜓∶ 𝑀 → 𝜓(𝑀) is a homeomorphism, where 𝜓(𝑀) is endowed with the
subspace topology. ♠

Definition 10 [Embedded Submanifold]:
Let𝑀 and 𝑀̃ be smooth manifolds. If 𝜓∶ 𝑀 → 𝑀̃ is an embedding, we say that 𝜓(𝑀) is an

embedded submanifold of 𝑀̃. ♠

It holds that embeddings are diffeomorphisms onto their images. Hence, we can think of an
embedding as being a generalization of diffeomorphism that does not need to be surjective. It makes
a copy of𝑀 in 𝑀̃.

Hence, we have the next condition we want to impose on (𝑀, 𝑔𝑎𝑏 ): there is an embedding
𝜓∶ 𝑀 → 𝑀̃, and we also require as a technical condition that 𝜓(𝑀) is an open subset of 𝑀̃.
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Having a smooth embedding, we have a way of connecting the two manifolds 𝑀 and 𝑀̃.
Nevertheless, we still have not imposed any restrictions on the metrics 𝑔𝑎𝑏 and 𝑔̃𝑎𝑏 . To do so, we
notice that 𝜓∶ 𝑀 → 𝜓(𝑀) is a diffeomorphism, and hence we can use it to perform both pullbacks
and pushforwards of tensor fields in 𝑀 and 𝜓(𝑀). We will then ask that there is a function
Ω ∈ 𝒞∞(𝜓(𝑀)) such thatΩ > 0 and

𝑔̃𝑎𝑏 |𝜓(𝛭) = Ω2𝜓∗𝑔𝑎𝑏 . (108)

This ensures that 𝜓 represents a conformal transformation between the spacetimes (𝑀, 𝑔𝑎𝑏 ) and
(𝑀̃, 𝑔̃𝑎𝑏 ).

Given these objects, we define future null infinity as the boundary ℐ+ = 𝜕𝜓(𝑀). ℐ+ is an
embedded submanifold of 𝑀̃ and it is not to the past of any points of 𝜓(𝑀). In symbols, we write

ℐ+ ∩ 𝐽−(𝜓(𝑀); 𝑀̃) = ∅. (109)

The causal past of a set 𝑆, 𝐽−(𝑆), is defined as follows.

Definition 11 [Causal Past]:
Let (𝑀, 𝑔𝑎𝑏 ) be a spacetime. Consider a set 𝑆 ⊆ 𝑀. The causal past of 𝑆 in𝑀, denoted 𝐽−(𝑆;𝑀)

or simply 𝐽−(𝑆), is defined as the set of all points in𝑀 from which one can reach 𝑆 by means of a
future-directed causal curve. See the book by Wald (1984, Chap. 8) for further details. ♠

Hence,ℐ+ is defined in this general construction as a submanifold of 𝑀̃ satisfying a couple of
special properties. In particular, it is a future boundary in the sense that is is not in the past of any
points in the spacetime.

Near infinity we expect the spacetime to be reasonably well-behaved, so that it actually looks like
Minkowski spacetime. Thus, we demand it enjoys reasonably good causal properties. We cannot
allow for closed timelike curves near infinity, for example. We enforce this behavior by demanding
that strong causality holds in a neighborhood of infinity.

Definition 12 [Strong Causality]:
Consider a spacetime (𝑀, 𝑔𝑎𝑏 ). We say (𝑀, 𝑔𝑎𝑏 ) is strongly causal if for any point 𝑝 ∈ 𝑀 and

every neighborhood𝑈 of 𝑝 there is a neighborhood𝑉 of 𝑝with 𝑝 ∈ 𝑉 ⊆ 𝑂 such that no causal curve
intersects 𝑉more than once. ♠

As discussed by Wald (1984, Chap. 8), strong causality essentially means that no causal curve
comes arbitrarily close to intersecting itself. This prevents causality violations upon perturbations
of the metric in an arbitrarily small neighborhood of a given point. There are stronger causality
impositions one could consider, but we shall assume only strong causality.

We need to impose thatΩ brings infinity in. This is done by imposing thatΩ vanishes onℐ+.
However, we definedΩ only on 𝜓(𝑀). Hence, we ask thatΩ extends to a functionΩ ∈ 𝒞∞(𝑀̃)
such that

Ω|ℐ+ = 0. (110)

Furthermore, we wantℐ+ to be precisely the submanifold withΩ = 0, so we must also require that

∇̃𝑎 Ω|ℐ+ ≠ 0. (111)
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This ensuresΩ = 0 is indeed a hypersurface and ensures there is a non-vanishing vector normal to
the surface. Hence, we get a single “sheet” withΩ = 0 rather than a plateau.

We want to obtain the full range of limits 𝑟 → +∞ at constant 𝑢’s. To ensure we get all points
at infinity, we define the vector field 𝑛𝑎 = 𝑔̃𝑎𝑏∇̃𝑏 Ω. We then demand the existence of a function
𝜔 ∈ 𝒞∞(𝑀̃)with 𝜔 > 0 on 𝜓(𝑀) ∪ ℐ+ such that

∇̃𝑎 (𝜔
4𝑛𝑎)|ℐ+ = 0 (112)

and such that the integral curves of 𝜔−1𝑛𝑎 are complete onℐ+. This technical condition is meant to
ensure thatℐ+ ≅ ℝ × 𝕊2.

Finally, we need for the Riemann tensor to fall off sufficiently quickly near infinity. Thus,
we ask that (𝑀, 𝑔𝑎𝑏 ) satisfies the vacuum Einstein field equations on some neighborhood of the
boundary of 𝜓(𝑀). This can be weakened to requiring that the vacuum Einstein field equations
hold asymptotically (Wald 1984, Chap. 11). The point is that at infinity we should get a vacuum
solution, so that we are far away from any matter sources.

We now bring everything together to get to the following definition.

Definition 13 [Asymptotically Flat Spacetime at Future Null Infinity]:
Consider a spacetime (𝑀, 𝑔𝑎𝑏 ). Suppose that there are

i. an unphysical spacetime (𝑀̃, 𝑔̃𝑎𝑏 ),

ii. a smooth embedding 𝜓∶ 𝑀 → 𝑀̃ such that 𝜓(𝑀) is open in 𝑀̃,

iii. and a smooth functionΩ∶ 𝜓(𝑀) → ℝwithΩ > 0 and

𝑔̃𝑎𝑏 = Ω2𝜓∗𝑔𝑎𝑏 . (113)

Furthermore, suppose that these objects are such that the following conditions are met:

i. 𝜓(𝑀) is a manifold with boundaryℐ+ = 𝜕𝜓(𝑀), whereℐ+ is an embedded three-manifold
of 𝑀̃ and it holds thatℐ+ ∩ 𝐽−(𝜓(𝑀); 𝑀̃) = ∅.

ii. Strong causality holds in (𝑀̃, 𝑔̃𝑎𝑏 ) at a neighborhood ofℐ+.

iii. Ω can be extended to a smooth functionΩ∶ 𝑀̃ → ℝwithΩ|ℐ+ = 0 and ∇̃𝑎 Ω|ℐ+ ≠ 0.

iv. Denoting 𝑛𝑎 = 𝑔̃𝑎𝑏∇̃𝑏 Ω, there is a smooth function 𝜔∶ 𝑀̃ → ℝ with 𝜔 > 0 such that
∇̃𝑎 (𝜔

4𝑛𝑎)|ℐ+ = 0 and such that the integral lines of 𝜔−1𝑛𝑎 are complete.

v. The vacuum Einstein field equations hold for (𝑀, 𝑔𝑎𝑏 ) on a neighborhood of infinity, or at
least asymptotically as one approaches infinity.

If all of these conditions aremet, we say that (𝑀, 𝑔𝑎𝑏 ) is asymptotically flat at future null infinity. ♠
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4.3 Case Study: Schwarzschild Spacetime

As a case study, let us show that Schwarzschild spacetime is asymptotically flat at future null infinity
(and actually at past null infinity too). We follow the discussion by Schmidt and Walker (1983) and
we will not make an effort to prove all of the conditions of asymptotic flatness, but rather show the
conformal compactification procedure.

We want to get to future null infinity, so it makes sense to employ a retarded time coordinate
instead of themore usual Schwarzschild time coordinate. In this scenario, 𝑢 is known as the retarded
Eddington–Finkelstein coordinate. The Schwarzschild metric is written as

d𝑠2 = −(1 − 2𝑀
𝑟 ) d𝑢2 − 2 d𝑢d𝑟 + 𝑟2 d𝕊2 . (114)

𝑀 is the black hole’s mass, and the coordinate ranges are 𝑢 ∈ ℝ and 𝑟 > 0. Notice that 𝑟 = 0 is not a
part of spacetime, since it is a physical singularity.

We proceed as withMinkowski spacetime. Define a new coordinate 𝑙 = 1
𝑟 , which is now defined

on the entire spacetime, since 𝑟 > 0 strictly. Using this new coordinate we get the line element

d𝑠2 = −(1 − 2𝑀𝑙) d𝑢2 + 2𝑙−2 d𝑢 d𝑙 + 𝑙−2 d𝕊2 . (115)

As with the Minkowski spacetime, we have a divergence at 𝑙 → 0+ because the area of the spheres
tends to infinity. We solve this by multiplying the metric by 𝑙2 (which means our conformal factor
isΩ = 𝑙) to get to

d𝑠̃2 = −𝑙2(1 − 2𝑀𝑙) d𝑢2 + 2 d𝑢 d𝑙 + d𝕊2 . (116)

This unphysical metric can now be extended so that 𝑙 ∈ ℝ. Through this procedure we get the
unphysical spacetime (𝑀̃, 𝑔̃𝑎𝑏 ).

5 The BMS Group
We are almost ready to discuss the Bondi–Metzner–Sachs (BMS) group. The last pre-requisite we
should discuss is the basic theory of Carrollian manifolds, which is the sort of structure present at
null infinity. This language will provide the natural arena for us to discuss the BMS group.

5.1 Carrollian Structures

By going back to the examples we provided of Minkowski and Schwarzschild spacetimes, one can
notice that the line element for the induced metric atℐ+ appears to have the form given in Eq. (94)
on page 22,

d𝜎̃2 |𝑙=0 = 0 d𝑢2 + d𝕊2 . (117)

Notice this is not a pseudo-Riemannian metric, because it is degenerate. If we denote this metric by
ℎ̃𝑎𝑏 , we know there is a vector 𝑛𝑎 ≠ 0 such that

ℎ̃𝑎𝑏 𝑛
𝑎 = 0. (118)
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Namely, in these coordinates we have

𝑛𝑎 = ( 𝜕𝜕𝑢)
𝑎
. (119)

These sorts of spacetimes can be understood as limiting case of Lorentzian spacetimes. Namely,
consider the Minkowski metric

d𝑠2 = −𝑐2 d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 , (120)

where we intentionally wrote the 𝑐 factors explicitly. Notice now that in the unusual limit 𝑐 → 0we
get

d𝑠2 = −0 d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 , (121)

which is a degenerate metric. Hence, the sort of manifold we are interested in can be understood as
the 𝑐 → 0 limit of a Lorentzian manifold.

These sorts of limits were originally considered by Lévy-Leblond (1965), who was interested
in studying the 𝑐 → 0 limit of the Poincaré group. Notice that in this limit the lightcones “close”
around the time axis, and there is no propagation. This resembles the strange causality features
present in the books by Lewis Carroll, in which Alice now and again finds herself in unexpected
situations. This prompted the name “Carrollian manifold” for manifolds endowed with a metric
that is degenerate along a specific direction.

The work of Lévy-Leblond (1965) was mostly focused on the Carroll group, which is the 𝑐 → 0
limit of the Poincaré group. Carrollian structures in differential geometry were defined and studied
by Duval, Gibbons, and Horvathy (2014a,b) and Duval, Gibbons, Horvathy, and Zhang (2014).
We now review the basic ideas and definitions necessary for the study of BMS symmetries.

When describing a pseudo-Riemannian manifold, we typically provide a pair (𝑀, 𝑔𝑎𝑏 ). 𝑀 is
the underlying smooth manifold on which we consider a smooth metric tensor 𝑔𝑎𝑏 . By analogy, one
would in principle expect that for Carrollian manifolds we should specify a pair (ℐ+, ℎ̃𝑎𝑏 ), where
ℐ+ is the underlying smooth manifold and ℎ̃𝑎𝑏 is the degenerate metric tensor field. This, however,
is insufficient. Due to ℎ̃𝑎𝑏 being degenerate, we also need to specify the non-vanishing vector 𝑛𝑎
such that ℎ̃𝑎𝑏 𝑛

𝑎 = 0. This vector has the role of defining the kernel of the metric tensor. A triple
(ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎) is known as a weak Carrollian structure, or simply a Carrollian structure.
The adjective “weak” makes reference to the fact that one can strengthen the definition of a

Carrollian structure by further specifying a covariant derivative. To understand why, recall that in a
pseudo-Riemannian manifold the metric singles out a particular choice of covariant derivative by
imposing that the Christoffel symbols be given by

Γ𝜌𝜇𝜈 =
1
2𝑔

𝜌𝜎(𝜕𝜇 𝑔𝜈𝜎 + 𝜕𝜈𝑔𝜎𝜇 − 𝜕𝜎 𝑔𝜇𝜈 ). (122)

Nevertheless, this is not applicable for a Carrollian metric. Since Carrollian metrics are degenerate,
the inverse metric tensor 𝑔𝑎𝑏 does not exist. Hence, imposing that themetric is parallelly transported
by the covariant derivative does not single out a covariant derivative. Duval, Gibbons, Horvathy,
and Zhang (2014) go further and ask that 𝑛𝑎 is too parallelly transported, but this is also not enough
to specify a single covariant derivative. Thus, one has to specify a covariant derivative in addition to
a weak Carrollian structure. A quadruple (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎, ∇̃𝑎 ) is known as a strong Carrollian structure.
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Definition 14 [Carrollian Structures]:
A weak Carrollian structure, or simply a Carrollian structure, is a triple (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎)whereℐ+
is a smooth manifold with dimension 𝑑, ℎ̃𝑎𝑏 is a positive semi-definite symmetric tensor with matrix
rank 𝑑 − 1, and 𝑛𝑎 is a non-vanishing vector with ℎ̃𝑎𝑏 𝑛

𝑎 = 0.
A strong Carrollian structure is a quadruple (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎, ∇̃𝑎 )where (ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎) is a weak Car-

rollian structure and ∇̃𝑎 is a covariant derivative with ∇̃𝑎 ℎ̃𝑏𝑐 = 0 and ∇̃𝑎 𝑛𝑏 = 0. ♠

Now suppose we are given an asymptotically flat spacetime (𝑀, 𝑔𝑎𝑏 )with unphysical conformal
extension (𝑀̃, 𝑔̃𝑎𝑏 ) and conformal factor Ω. Then future null infinity has a natural Carrollian
structure (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎). Namely,ℐ+ is just future null infinity itself, ℎ̃𝑎𝑏 is the metric induced onℐ+
by 𝑔̃𝑎𝑏 , and 𝑛

𝑎 = 𝑔̃𝑎𝑏∇̃𝑏 Ω.
To proceed, notice that there is a gauge freedom in the definition of future null infinity. Namely,

if (𝑀, 𝑔𝑎𝑏 ) is asymptotically flat with conformal factor Ω, then the conformal factor 𝜔Ω for 𝜔 ∈
𝒞∞(𝑀̃) and 𝜔 > 0 would work just as well. Using this freedom, the Carrollian structure of null
infinity can be made into a strong Carrollian structure. As discussed by Wald (1984, Chap. 11), one
can use this gauge freedom to impose that ∇̃𝑎 𝑛𝑏 = 0. Notice that this condition is equivalent to
imposing that ∇̃𝑎 ∇̃𝑏 Ω = 0, which does not need to hold in general. However, one can always find a
choice ofΩ for which this holds.

The strong Carrollian structure ends up being too strong for our purposes. Hence, we will
work mostly with the weak Carrollian structure of null infinity and only comment later on the role
the strong Carrollian structure can play.

5.2 Symmetries at Null Infinity

We are now ready to discuss the symmetry group of future null infinity. To do so, consider the
gauge freedommentioned at the end of the last section, which consists of exchanging the conformal
factor Ω according to Ω → 𝜔Ω for smooth 𝜔 > 0. Using that 𝑔̃𝑎𝑏 = Ω2𝑔𝑎𝑏 (we are omitting the
pushforward for simplicity), that ℎ̃𝑎𝑏 is the metric induced by 𝑔̃𝑎𝑏 onℐ+, and that 𝑛𝑎 = 𝑔̃𝑎𝑏∇̃𝑏 Ωwe
get that underΩ → 𝜔Ω the Carrollian structure at null infinity transforms according to

ℐ+ → ℐ+, ℎ̃𝑎𝑏 → 𝜔2ℎ̃𝑎𝑏 , and 𝑛𝑎 → 𝜔−1𝑛𝑎. (123)

There is no a priori preference on whether we should chooseΩ or 𝜔Ωwhen performing the
conformal compactification. After all, this procedure is unphysical. Therefore, wemust consider the
two scenarios as being physically equivalent. We thus get an equivalence relation being Carrollian
structures

(ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎) ∼ (ℐ+, 𝜔2ℎ̃𝑎𝑏 , 𝜔

−1𝑛𝑎). (124)

The transformations that take (ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎) to an equivalent structure (ℐ+, 𝜔2ℎ̃𝑎𝑏 , 𝜔

−1𝑛𝑎) should be
regarded as symmetries of future null infinity. The transformations that preserveℐ+ are diffeomor-
phisms, the transformations that preserve (ℐ+, ℎ̃𝑎𝑏 ) (up to gauge transformation) are conformal
isometries, and the transformations that preserve (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎) are a subclass of conformal isometries
that preserve the so-called strong conformal geometry (see, e.g., Penrose 1974; Penrose and Rindler
1986).

We will begin our discussion by taking a coordinate approach. Using the gauge freedom in the
definition of future null infinity one can choose a coordinate system near ℐ+ in which (see, e.g.,

– 33 –



Wald 1984, Chap. 11)
d𝑠̃2 = 2 dΩ d𝑢 + d𝕊2 + 𝒪(Ω), (125)

whereΩ is the conformal factor used in the definition of null infinity. The induced metric ℎ̃𝑎𝑏 then
has the line element

d𝜎̃2 = d𝕊2 (126)

while the normal vector 𝑛𝑎 is given by

𝑛𝑎 = ( 𝜕𝜕𝑢)
𝑎
. (127)

Notice this choice of coordinates does not restrict the generality of our analysis. It merely provides
a “standard” triple

(ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎) = (ℝ × 𝕊2, d𝕊2 , ( 𝜕𝜕𝑢)

𝑎
). (128)

This can be thought of as a canonical choice of null infinity which we use to compare with other
possible choices. Notice that these other possible choices are just as physical as this canonical choice.

We will find the conformal isometries that preserve the strong conformal structure—i.e., the
transformations that preserve theCarrollian structure—by finding the transformations that preserve
ℐ+, then restrict them to the transformations that preserve (ℐ+, ℎ̃𝑎𝑏 ) (up to gauge transformation),
and finally restricting these to the transformations that preserve (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎) (up to gauge transfor-
mation).

The transformations that preserveℐ+ are diffeomorphisms. This is still extremely general. We
can restrict this large group further by imposing that (ℐ+, ℎ̃𝑎𝑏 ) is preserved up to gauge transforma-
tion. Since the gauge transformations map (ℐ+, ℎ̃𝑎𝑏 ) to (ℐ

+, 𝜔2ℎ̃𝑎𝑏 )we see that this is the group of
conformal isometries of (ℐ+, ℎ̃𝑎𝑏 ). In the canonical triplet, we have

(ℐ+, ℎ̃𝑎𝑏 ) = (ℐ+, d𝕊2). (129)

Hence, we want transformations that are conformal isometries of the sphere (since we have the
metric of a sphere) and change 𝑢 in an arbitrary way. We know from Section 3.4 that the conformal
isometries on the sphere are the Möbius transformations, which in stereographic coordinates can
be written as

𝜁 → 𝑎𝜁 + 𝑏
𝑐𝜁 + 𝑑 (130)

with
(𝑎 𝑏
𝑐 𝑑

) ∈ SL(2, ℂ)/ℤ2 ≅ SO+(3, 1). (131)

Furthermore, we have to assign a general transformation law for 𝑢. Since 𝑢 does not occur in the
metric, we can preserve the conformal structure of the metric by perfoming any transformation of
the form

𝑢 → 𝐹(𝑢, 𝜁, 𝜁̄) (132)

with 𝜕𝐹
𝜕𝑢 > 0 (a condition which is meant to keep the coordinates well-defined).
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We thus get the general coordinate transformations

{
𝜁 → 𝑎𝜁 + 𝑏

𝑐𝜁 + 𝑑 ,

𝑢 → 𝐹(𝑢, 𝜁, 𝜁̄).
(133)

This collection of transformations form a group known as the Newman–Unti group (Newman
and Unti 1962). As a set, the Newman–Unti group is given by SO+(3, 1) × 𝒞∞(ℝ × 𝕊2).

For completeness, we mention that under the Möbius transformation

𝜁 → 𝜁′ = 𝑎𝜁 + 𝑏
𝑐𝜁 + 𝑑 (134)

the metric of the sphere transforms according to (recall Eq. (62) on page 16)

2𝛾𝜁′𝜁̄′ d𝜁 d𝜁̄
′ = 2𝐾(𝜁, 𝜁̄)2𝛾𝜁𝜁̄ d𝜁d𝜁̄ (135)

with
𝐾(𝜁, 𝜁̄) = 1 + 𝜁𝜁̄

(𝑎𝜁 + 𝑏)(𝑎̄𝜁̄ + 𝑏̄) + (𝑐𝜁 + 𝑑)(𝑐̄𝜁̄ + 𝑑̄)
. (136)

Now we impose that the Carrollian structure is preserved as a whole. This means we also must
have that 𝑛𝑎 → 𝜔−1𝑛𝑎. We know already that 𝜔 = 𝐾(𝜁, 𝜁̄) because we have already restricted the set
of possible transformations to the Newman–Unti group. To further restrict the transformations,
we notice that the 𝑢 parameter is defined by the equation

𝑛𝑎∇̃𝑎 𝑢 = 1, (137)

and this equation is gauge-independent. Hence, since the normal vector transforms as 𝑛𝑎 → 𝜔−1𝑛𝑎,
it follows that we must have

∇̃𝑎 𝑢 → 𝜔∇̃𝑎 𝑢. (138)

This is better expressed in the language of differential forms, in which case we find that the transfor-
mation for 𝑢must be such that

d𝑢 → d𝑢′ = 𝐾(𝜁, 𝜁̄) d𝑢 , (139)

where we used 𝜔 = 𝐾(𝜁, 𝜁̄). Integrating Eq. (139) allows us to conclude that the allowed transforma-
tions for 𝑢 are those with the form

𝑢 → 𝑢′ = 𝐾(𝜁, 𝜁̄)(𝑢 + 𝑓(𝜁, 𝜁̄)), (140)

where 𝑓 ∈ 𝒞∞(𝕊2) is an arbitrary function that occurs as an integration constant. We assume it to
be smooth because we are working in a smooth manifold, so the chart transition maps should be
smooth.

The transformations that preserve the (weak) Carrollian structure are thus given by

{
𝜁 → 𝑎𝜁 + 𝑏

𝑐𝜁 + 𝑑 ,

𝑢 → 𝐾(𝜁, 𝜁̄)(𝑢 + 𝑓(𝜁, 𝜁̄)),
(141)

– 35 –



where 𝐾 is given by Eq. (136) on the previous page. These are known as Bondi–Metzner–Sachs
(BMS) transformations and they form the (restricted) BMS group (Bondi, Van der Burg, and
Metzner 1962; Sachs 1962b), which we will denote as 𝐺BMS. The adjective “restricted” refers to the
fact that we are ignoring time and space reflections.

Notice that a BMS transformation is characterized by a pair (Λ, 𝑓) ∈ SO+(3, 1) × 𝒞∞(𝕊2), where
Λ relates to the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 in Eq. (141) on the preceding page by

Π−1(Λ) = (𝑎 𝑏
𝑐 𝑑

), (142)

withΠ∶ SL(2, ℂ)/ℤ2 → SO+(3, 1) being the isomorphism between the two groups. We denote the
function𝐾 associated to Λ by𝐾Λ. Using this notation, the group product ⊙ is given by

(Λ′, 𝑓′) ⊙ (Λ, 𝑓) = (Λ′Λ, 𝑓 + (𝐾Λ−1 ∘ Λ) ⋅ (𝑓
′ ∘ Λ)), (143)

where ∘ denotes composition of mappings and ⋅ denotes the pointwise product of functions.
Notice that SO+(3, 1) is isomorphic to the subgroup

ℒ = {(Λ, 0); Λ ∈ SO+(3, 1)} (144)

of the BMS group. Similarly,𝒞∞(𝕊2) is isomorphic to

𝑇 = {(1, 𝑓); 𝑓 ∈ 𝒞∞(𝕊2)}. (145)

Eq. (143) allows us to conclude that 𝑇 is a normal subgroup of the BMS group. ℒ is not a normal
subgroup of the BMS group.

Notice that these two subgroups satisfy

ℒ ∩ 𝑇 = {(1, 0)}, (146)

which means their intersection is given by the BMS group’s identity. Furthermore, using Eq. (143)
we can see that any element (Λ, 𝑓) of the BMS group can be written in the form

(Λ, 𝑓) = (Λ, 0) ⊙ (1, 𝑓). (147)

Hence, we can write the BMS group as ℒ𝑇. These results allow us to conclude that the BMS
group is the semidirect product ofℒ and 𝑇. Hence, the BMS group is given byℒ ⋉ 𝑇. Using that
ℒ ≅ SO+(3, 1) and 𝑇 ≅ 𝒞∞(𝕊2), we can write that the BMS group is given by the semidirect product
SO+(3, 1) ⋉ 𝒞∞(𝕊2).

5.3 Alternative Derivation with Conformal Killing Vector Fields

Let us now derive the BMS group once again, but this time employing vector field methods. In
other words, we want to find which vector fields generate the BMS transformations. This will make
it easier for us to compare the results with those of the Poincaré group.

We know we want to consider conformal isometries. Furthermore, these conformal isometries
should also preserve (in a conformal sense) the normal vector 𝑛𝑎. We can state these conditions
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mathematically by stating that we are looking for diffeomorphisms generated by vector fields 𝜉𝑎
such that

£𝜉ℎ̃𝑎𝑏 = 𝜆ℎ̃𝑎𝑏 and £𝜉𝑛
𝑎 = −𝜆2𝑛

𝑎, (148)

where the second condition follows from the fact that 𝑛𝑎 transforms as 𝑛𝑎 → 𝜔−1𝑛𝑎 while ℎ̃𝑎𝑏
transforms as ℎ̃𝑎𝑏 → 𝜔2ℎ̃𝑎𝑏 .

Eq. (148) establishes a system of differential equations for the vector field 𝜉𝑎. Eq. (55) on page 14
allows us to express this system of differential equations in terms of any derivative operator onℐ+.
We choose to do so with the derivative operator𝐷𝑎 , which is defined as having the same Christoffel
symbols as the Levi-Civita connection on the round sphere, with the remaining Christoffel symbols
vanishing. This choice of connection turns (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎, 𝐷𝑎 ) into a strong Carrollian structure.
Using the condition imposed on the metric, we find that

𝜆ℎ̃𝑎𝑏 = £𝜉ℎ̃𝑎𝑏 , (149a)
= 𝜉𝑐𝐷𝑐 ℎ̃𝑎𝑏 + ℎ̃𝑐𝑏𝐷𝑎 𝜉

𝑐 + ℎ̃𝑎𝑐𝐷𝑏 𝜉
𝑐, (149b)

= 𝐷𝑎 (ℎ̃𝑐𝑏 𝜉
𝑐) + 𝐷𝑏 (ℎ̃𝑎𝑐 𝜉

𝑐). (149c)

The equation
𝐷𝑎 (ℎ̃𝑐𝑏 𝜉

𝑐) + 𝐷𝑏 (ℎ̃𝑎𝑐 𝜉
𝑐) = 𝜆ℎ̃𝑎𝑏 (150)

is the conformal Killing equation for a vector field ℎ̃𝑎𝑏 𝜉
𝑏 defined on the sphere. Therefore, we can

conclude that the projection of 𝜉𝑎 on the sphere is a conformal Killing vector field on the sphere. If
we denote this conformal Killing vector field as 𝑌𝑎 we can thus write

𝜉𝑎 = 𝑌𝑎 + 𝐹𝑛𝑎, (151)

for some smooth function 𝐹 which we assume is such that 𝜕𝐹𝜕𝑢 > 0. This family of vector fields
generate the Newman–Unti transformations.

At this point, it is useful to notice that Eqs. (150) and (151) imply

𝐷𝑎 𝑌𝑏 + 𝐷𝑏𝑌𝑎 = 𝜆ℎ̃𝑎𝑏 . (152)

This can be understood as an equation on the two-sphere, in which we have an inverse metric
available. Contracting the expression with the inverse metric allows us to conclude that

𝐷𝑎 𝑌
𝑎 = 𝜆. (153)

This last equation can be understood as both on the sphere or onℐ+, as it is the same statement in
both cases.

As in our previous derivation, we get from the Newman–Unti group to the BMS group by
considering the behavior of the normal vector 𝑛𝑎. We have

−𝜆2𝑛
𝑎 = £𝜉𝑛

𝑎, (154a)

= 𝜉𝑏𝐷𝑏 𝑛
𝑎 − 𝑛𝑏𝐷𝑏 𝜉

𝑎, (154b)
= −𝑛𝑏𝐷𝑏 𝜉

𝑎, (154c)
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where we used the fact that 𝐷𝑎 𝑛𝑏 = 0. In terms of 𝐷𝑎 , the differential equation implied by the
behavior of 𝑛𝑎 is

𝑛𝑏𝐷𝑏 𝜉
𝑎 = 𝜆

2𝑛
𝑎, (155)

where 𝜆 is given by Eq. (153) on the preceding page. We can use Eq. (151) on the previous page to
find that

𝑛𝑏𝐷𝑏 𝜉
𝑎 = 𝑛𝑏𝐷𝑏𝑌

𝑎 + 𝑛𝑏𝐷𝑏 (𝐹𝑛
𝑎), (156a)

= (𝑛𝑏𝐷𝑏𝐹)𝑛
𝑎. (156b)

This last expression can be obtained by using𝐷𝑎 𝑛𝑏 = 0 and 𝑛𝑏𝐷𝑏𝑌
𝑎 = 0—the latter can be obtained

by expressing the equation in terms of Christoffel symbols.
Eqs. (155) and (156) can be combined to yield

(𝑛𝑏𝐷𝑏𝐹)𝑛
𝑎 = 𝜆

2𝑛
𝑎. (157)

This implies
𝑛𝑎𝐷𝑎 𝐹 = 𝜆

2 , (158)

which together with Eq. (153) on the previous page yields

𝑛𝑎𝐷𝑎 𝐹 =
𝐷𝑎 𝑌

𝑎

2 . (159)

This is a differential equation that must be respected by the function 𝐹 if we want 𝑛𝑎 to be preserved
up to a gauge transformation.

To solve this differential equation, introduce the coordinate 𝑢 through 𝑛𝑎𝐷𝑎 𝑢 = 1. Since𝐷𝑎 𝑌𝑎
can be understood as defined on the sphere, it bears no dependence on the parameter 𝑢. We can
then integrate the differential equation to get

𝐹(𝑢, 𝜁, 𝜁̄) =
𝐷𝑎 𝑌

𝑎

2 𝑢 + 𝑓(𝜁, 𝜁̄), (160)

where 𝑓 ∈ 𝒞∞(𝕊2) arises as an integration “constant”.
Bringing everything together we find that the generic vector field generating a BMS transforma-

tion is given by

𝜉𝑎 = 𝑌𝑎 + (
𝐷𝑏𝑌

𝑏

2 𝑢 + 𝑓(𝜁, 𝜁̄))𝑛𝑎, (161)

with 𝑌𝑎 being some conformal Killing vector field on the two-sphere, 𝑛𝑏𝐷𝑏 𝑢 = 1, and 𝑓 ∈ 𝒞∞(𝕊2).

5.4 Poincaré Group as a BMS Subgroup

Now that we know what the BMS group is, it is interesting understand how the Poincaré group fits
within it.

We begin by noticing that the BMS group is given by 𝐺BMS = SO+(3, 1) ⋉ 𝒞∞(𝕊2), while the
Poincaré group is ISO+(3, 1) = SO+(3, 1) ⋉ℝ4. The semidirect product structure is certainly similar,
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but we still need to understand how and whether the Poincaré group is a subgroup of the BMS
group.

The physical reason we expect ISO+(3, 1) to fit inside 𝐺BMS is because 𝐺BMS is the symmetry
group at future null infinity, while ISO+(3, 1) is the symmetry group in the bulk of Minkowski
spacetime. It seems reasonable that bulk symmetries should extend to boundary symmetries, so it is
reasonable to expect that there is a relation between these two groups. In fact, before the analysis
by Bondi, Van der Burg, and Metzner (1962) and Sachs (1962b), it was thought that the symmetry
group at infinity should simply be the Poincaré group. Hence, a byproduct of our discussion should
be to understand what are the extra symmetries present in the BMS group.

We start by considering Lorentz transformations. These are the vector fields 𝐽𝑎𝑖 and𝐾𝑎𝑖 given on
Eq. (88) on page 20. These vectors induce vectors onℐ+. These induced vectors can be computed by
considering the expressions onEq. (88) onpage 20, changing coordinates from (𝑡, 𝑥, 𝑦, 𝑧) to (𝑢, 𝑟, 𝜁, 𝜁̄),
dropping the 𝑟-component of the resulting vectors (which is not defined intrinsically onℐ+) and
then taking the 𝑟 → +∞. Through this procedure, the generators of Lorentz transformations take
the general form

𝜉𝑎 = 𝑌𝑎 + 𝑢
2𝐷𝑏𝑌

𝑏( 𝜕𝜕𝑢)
𝑎
, (162)

where 𝑌𝑎 is some conformal Killing field on the sphere. Comparing this equation with Eq. (161) on
the preceding page lets us notice that Lorentz transformations correspond precisely to the SO+(3, 1)
contributions to the BMS group. This is not surprising, since SO+(3, 1) is indeed the Lorentz
group.

We still have to discuss the role of translations. These are the fields 𝑃𝑎𝜇 given on Eq. (88) on
page 20. We can compute the induced vectors on future null infinity. One finds the general form

𝜉𝑎 = 𝑓̃(𝜁, 𝜁̄)( 𝜕𝜕𝑢)
𝑎
, (163)

where 𝑓̃ is a linear combination of spherical harmonics with 𝑙 ≤ 1. If we compare this result with
Eq. (161) on the preceding page, we find that the translations are inside the BMS group by means of
the𝒞∞(𝕊2) factor. In fact, this𝒞∞(𝕊2) factor generalizes the translations by allowing transformations
of the form

𝜉𝑎 = 𝑓(𝜁, 𝜁̄)( 𝜕𝜕𝑢)
𝑎
, (164)

where 𝑓 ∈ 𝒞∞(𝕊2), meaning 𝑓 is now a linear combination of spherical harmonics with any value
for 𝑙. This thus leads us to the concept of generalized translations, or supertranslations.

From this discussion, one may be prompted to conclude that the Poincaré group is a subgroup
of the BMS group. While this is correct, there is an important caveat: there is not a preferred choice
of Poincaré subgroup.

To be more clear, let us work with the Lorentz group. This is motivated by the fact that there is
actually a preferred choice of translations, but there is no preferred choice of Lorentz subgroup of
the BMS group. The “natural” choice of Lorentz subgroup of 𝐺BMS is given by

ℒ = {(Λ, 0) ∈ 𝐺BMS; Λ ∈ SO+(3, 1)}. (165)
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It is correct to say thatℒ ≅ SO+(3, 1). Hence, the Lorentz group is a subgroup of the BMS group.
Nevertheless, let 𝑔 ∈ 𝒞∞(𝕊2). Noticing first that (1, 𝑔)−1 = (1, −𝑔), we point out that

(1, −𝑔) ⊙ (Λ, 0) ⊙ (1, 𝑔) = (Λ, −𝑔 + (𝐾Λ−1 ∘ Λ) ⋅ (𝑔 ∘ Λ)), (166)

which in general is not an element ofℒ. Hence,ℒ is not a normal subgroup. This means that while
ℒ is a copy of the Lorentz group inside the BMS group, so is 𝑔−1ℒ𝑔.

In some cases, this is not a deep statement. For example, consider Minkowski spacetime. We
have a bulk Lorentz group, which induces symmetries at infinity. The induced group can then
be chosen to be the correct Lorentz group. However, in the general case of an asymptotically flat
spacetime wemight not have bulk symmetries to choose which is the correct Lorentz group. Hence,
bothℒ and 𝑔−1ℒ𝑔 should be considered as possible Lorentz groups. It is impossible to prefer one
over the other. This leads to difficulties in defining angular momentum at null infinity (Winicour
1980).

It is interesting to point out that the analogous problem does not occur for translations. Sachs
1962a has shown that the translations are in fact the unique four-dimensional normal subgroup of
the BMS group. Therefore, although there is not a preferred definition of Lorentz transformations
within the BMS group, there is a preferred definition of translations.

5.5 Possible Criticism of the Derivation of the BMS Group

Since our derivation of the BMS group has led us to an infinite-dimensional group, one could
challenge some assumptions we made during the derivation. The purpose of this section is to
consider two possible critiques of the derivation of the BMS group and argue that the results are, in
fact, correct. Hence, we will try to point out possible problems with the arguments and show that
these “problems” are in fact necessary to obtain the Poincaré group at infinity.

We begin by noticing that an appropriate definition of asymptotic symmetries at null infinity
should reproduce at least the Poincaré group. Whatever symmetry group we have at infinity, it
should have the Poincaré group as a subgroup. This is due to the fact that at null infinity we have
“effectively” Minkowski spacetime, and the Poincaré group is the symmetry group of Minkowski
spacetime. All Poincaré transformations should have an asymptotic version at null infinity, and
thus should belong to the group of asymptotic symmetries. Hence, an asymptotic symmetry group
that is smaller than the Poincaré group should be considered inadmissible on physical grounds.

The first possible criticism one could make to the derivations we provided is that we considered
that (ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎)was preserved only conformally. Hence, instead of using the equivalence relation

(ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎) ∼ (ℐ+, 𝜔2ℎ̃𝑎𝑏 , 𝜔

−1𝑛𝑎), (167)

we should have used
(ℐ+, ℎ̃𝑎𝑏 , 𝑛

𝑎) ∼ (ℐ+, ℎ̃𝑎𝑏 , 𝑛
𝑎), (168)

which means we should consider only isometries, not conformal isometries. In other words, we
should always work with 𝜔 = 1.

If one goes back to our derivation an considers this new imposition, one will find this does not
rule out the supertranslations. Rather, it only affects Lorentz transformations. Boosts, to be more
precise. The only transformations with 𝜔 ≠ 1 are the Lorentz boosts, which become conformal
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transformations on the sphere at infinity. Hence, excluding conformal transformations seems to
be too strong of a requirement, because it leads to a asymptotic symmetry group that does not
have the Poincaré group as a subgroup. We conclude that we must, in fact, consider the conformal
transformations, precisely as we did.

The second criticism one could make is that we imposed that the weak Carrollian structure
should be preserved, but we could have imposed conservation of the strong Carrollian structure.
As shown in Appendix A, it turns out that preserving the strong Carrollian structure rules out
supertranslations, but it also rules out spatial translations. Hence, it is too strong of a requirement,
and we cannot ask for the strong Carrollian structure to be preserved by the asymptotic symmetries
without losing the Poincaré group in the process.

We conclude, therefore, that supertranslations seem to be a necessity if we want to enjoy the
Poincaré group at infinity. They are a feature, not a bug.

6 Physical Consequences and Applications
Now that we know what the BMS group is we are ready to discuss some of its physical implications
and applications. We have already mentioned the difficulty in defining angular momentum at
null infinity in the previous section, but now we dive deeper in the physical consequences of BMS
symmetries.

6.1 Physical Realization of Supertranslation

So far, BMS transformations, and supertranslations especially, may seem to be purely theoretical.
After all, supertranslations are symmetries that are only available at infinity, and infinity is always
far away. Now we discuss how a supertranslation can be physically realized, what what it means to
do so.

To get some intuition, we begin by discussing boosts. Like supertranslations, boosts are diffeo-
morphisms. As a consequence, two spacetimes that differ by a boost (or by a supertranslation) are
to be considered physically the same. There is no experiment that can distinguish between these
two possibilities. Nevertheless, it is possible to physically realize a boost. In other words, one can
“induce” a boost by means of a physical process.

Consider a spacetime comprised of a single massive particle of mass𝑀. By Birkhoff’s theorem
one knows this spacetime is given by Schwarzschild spacetime. This is independent of whether
the particle is “at motion” or “at rest”: both solutions are physically equivalent, because they are
diffeomorphic.

Consider, however, a spacetime as follows. We start with a single massive particle of mass𝑀,
but at advanced time 𝑣0 a photon with energy 𝐸 is sent in from infinity en route to a collision with
the particle of mass𝑀. Upon the collision, the massive particle absorbs the photon. Hence, for
advanced time 𝑣 < 𝑣0 the solution is the Schwarzschild solution with mass𝑀, but for 𝑣 > 𝑣0 the
solution is the Schwarzschild solution with mass 𝑀 + 𝐸. Furthermore, these two solutions are
boosted relative to each other, because after the collision the massive particle has energy𝑀+ 𝐸 and
also is moving relative to its initial state. In other words, it was accelerated at the instant of the
collision. Notice that in this example the global spacetime is not Schwarzschild spacetime.
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Similarly, one can induce a supertranslation by throwing in matter. Hawking, Perry, and
Strominger (2017) considered throwing in a null shockwave with the stress-energy-momentum
tensor having the form

𝑇𝑣𝑣 = 𝑇(𝜁, 𝜁̄)
4𝜋𝑟2

+ ⋯ , (169)

where 𝑇(𝜁, 𝜁̄) is some function on the sphere and the dots indicate corrections that are necessary for
the stress tensor to be conserved. The 𝑙 = 0 component of 𝑇 induces a change in mass, the 𝑙 = 1
components induce a change in momentum, and the 𝑙 ≥ 2 components induce supertranslations.

6.2 Construction of Hadamard Vacua

There are four basic forces in our universe. Gravity, electromagnetism, and the strong and weak
nuclear forces. While gravity is well-described by general relativity, the standard model of particle
physics provides a good description of the remaining three (Schwartz 2014). However, while general
relativity is a classical field theory, the standard model is a quantum field theory constructed on flat
spacetime. Thus, in principle, general relativity cannot explain how the fields of the standard model
fall, and the standard model knows nothing about gravity.

While a full description of gravity at the quantum level would require a knowledge of a full
theory of quantum gravity, which at the present is only a dream, we can make do with an approxi-
mation. Quantum field theory in curved spacetime is the description of how quantum fields evolve
upon a curved background spacetime. In this approximation, the background spacetime is assumed
to be fixed, so that the quantum fields to not affect the background geometry.

An interesting approach to quantum field theory that is particularly useful in the curved
spacetime formulation is known as the algebraic approach (see, e.g., Aguiar Alves 2023; Dappiaggi,
Moretti, and Pinamonti 2017; Fewster and Rejzner 2020; Hollands and Wald 2015; Wald 1994). In
this approach, one takes a dual view of the theory. One part of the theory is described by the algebra
of observables. This is the space of all observables to be considered in the theory and, as the name
suggests, it has the structure of an algebra, which is a vector space with some extra special properties.
On the other hand, we have the space of states, which are positive linear normalized functionals on
the algebra of observables. It is usually easy to construct the algebra of observables, at least in the
case of a non-interacting theory. However, even in the case of a non-interacting theory it is very
hard to construct physically meaningful states.

By “physically meaningful” we mean that the state should allow for the expectation value of the
stress-energy-momentum tensor to be well-defined. This is a non-trivial condition known as the
Hadamard condition. It essentially states that in the ultraviolet limit any “physically meaningful”
state should resemble the usual vacuum in Minkowski spacetime.

Dappiaggi, Moretti, and Pinamonti (2017) obtained a method to construct physically mean-
ingful states by exploiting the BMS group. Namely, one does as follows. Assume a spacetime
which is asymptotically flat at future null and timelike infinities (notice this requires the existence
of the timelike infinity). Then one can show that the algebra describing observables in the bulk of
the spacetime can be fitted in a one-to-one manner into the algebra describing observables at the
boundary of spacetime, i.e., at future null and timelike infinities. Hence, any observable in the bulk
of the spacetime can be described at the boundary. One can then define a state at the boundary
by imposing that it is a BMS-invariant state. Since the BMS group is infinite-dimensional, this is
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a strong restriction that singles out a state. This state can then be used to define an induced state
in the bulk algebra, which turns out to the a Hadamard state. In other words, this construction
induces a physically meaningful state.

The elementary idea is that one exploits the infinite-dimensional symmetry group at the bound-
ary to define a state, which can then be pulled-back to the bulk. This construction is reviewed in
detail by Dappiaggi, Moretti, and Pinamonti (2017).

6.3 Weinberg’s Soft Graviton Theorem

Consider a scattering process in some collider experiment. One typically will collide 𝑛 particles
and produce 𝑚 particles as a consequence. This is an 𝑛 → 𝑚 scattering process. A typical task
in quantum field theory is to compute the cross section for such a scattering. However, there is
an important remark. In the out state, there might be particles that will not be measured by the
detectors of the experiment. For example, there could be gravitons or low energy photons. One
should somehow take this particles into account. This is done by considering the so-called inclusive
cross sections.

In order to prove that these inclusive cross sections are well-defined (and, more specifically, that
they do not suffer of infrared divergences) one uses the so-called soft theorems. Our particular
interest is in theWeinberg soft graviton theorem (Weinberg 1965). This theorem relates the scattering
amplitude of the 𝑛 → 𝑚 process with the scattering amplitude of the 𝑛 → 𝑚+𝑘 process that involves
the emission of 𝑘 soft gravitons, i.e., of 𝑘 gravitons with vanishingly small energy. The result is that
the two amplitudes are proportional to each other, with the proportionality factor being known as
the soft factor.

Relations between scattering amplitudes are often consequences of symmetries, and so is the
case in this scenario. More specifically, this is the consequence of a conserved charge. Strominger
(2014) argued that for the scattering problem to be well-defined in general relativity one should
have a specific relation between the BMS transformations at past and future null infinity. This
relation induces the conservation of infinitely many charges at infinity, each charge being related
to a different supertranslation. Imposing this conservation of charges at the quantum level leads
to a Ward identity—a dynamical consequence of the charge conservation. In the case of the BMS
conserved charges, this Ward identity leads precisely to Weinberg’s soft graviton theorem.

This application is reviewed in detail by Strominger (2018). Weinberg (1965, 1995) discusses the
soft theorems and their applications to infrared divergences and inclusive cross sections.

6.4 Gravitational Memory Effect

The gravitational memory effect was originally discovered in linearized gravity by Zel’dovich and
Polnarev (1974). It basically consists on the prediction that the passage of a gravitational wave
permanently displaces the relative positions of two nearby inertial detectors. It turns out that this
effect is too a reflection of BMS transformations.

A gravitational wave can be interpreted as a null shockwave such as the one on Eq. (169) on the
previous page. Hence, the passage of a gravitationalwave induces a supertranslation in the spacetime.
We thus can understand the memory effect as being due to a supertranslation (Strominger and
Zhiboedov 2016).
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This application is interesting because the memory effect is particularly physical, and it is
expected to be measurable by future gravitational wave detectors (Favata 2010; Grant and Nichols
2023). Hence, we might soon have an experimental test of supertranslations.

The relation between supertranslations and thememory effect is briefly discussed by Strominger
(2018). The memory effect is reviewed, for example, by Bieri and Polnarev (2024).

6.5 Soft Hair on Black Holes

Finally, we discuss the results obtained by Hawking, Perry, and Strominger (2016, 2017) concerning
black holes.

A known prediction in black hole thermodynamics is the information loss puzzle. Hawking
(1974, 1975) originally noticed that the behavior of quantum fields on a spacetime containing a
black hole formed by gravitational collapse leads the black hole to emit radiation. This radiation,
now known as Hawking radiation, is thermal with temperature inversely proportional to the black
hole’s mass (in the case of a Schwarzschild black hole). This means that the black hole loses mass to
the radiation bath, and the temperature rises as the black hole becomes smaller. This means the
black hole loses mass even faster, until it eventually completely evaporates.

The complete evaporation argument assumes the calculations—which are performed using
quantum field theory in curved spacetimes—to hold up to the last instants of evaporation. Hence,
the argument cannot be fully trusted. Yet, it is interesting to consider its consequences.

The main puzzle is what is now known as the information loss puzzle, or information loss
paradox. It was noticed by Hawking (1976) that if the quantum field starts at a pure state at very
early times, it will be in a mixed state after the black hole evaporates. The basic idea is that the mixed
state for the fields outside the black hole is a partial trace of the full pure state. However, once the
black hole evaporates, the outer part is all that is left, and this is a mixed state. This means the time
evolution of the quantum field state is not unitary.

This conclusion is seen by many physicists as troublesome, but there is nothing problematic
with it in principle (Unruh and Wald 2017). It does involve problematic argument, though, due to
the details of the operator algebras describing the quantum fields, but we will not dive into these
details here.

What is mainly of interest for us is noticing that there are a few conserved quantities in the
stellar collapse spacetime. In principle, one would expect all ten Poincaré charges and the total
electric charge to be conserved. Hence, we have eleven “hairs” on the black hole characterizing what
it was formed from. Nevertheless, this is still not enough information to capture everything that
was going on in the spacetime at early times.

Hawking, Perry, and Strominger (2016, 2017) noticed, however, that supertranslations also
induce conserved charges in the spacetime. The conservationof these supertranslation chargesmeans
there are infinitely many conserved charges at null infinity. This means much more information is
preserved in the spacetime than previously thought.

It should be pointed out, though, that this does not mean all the information is preserved
nor that the evolution is unitary. Supertranslations provide an important piece to understand the
puzzle, but do not solve it completely.
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A Preserving the Strong Carrollian Structure
In this appendix, we consider how preserving the strong Carrollian structure can affect the BMS
group. For simplicity, we will from the start ignore the contributions due to Lorentz transfor-
mations, since we are interested in knowing whether preserving the strong Carrollian structure is
enough to get rid of the supertranslations. This considerably simplifies the calculations, but will still
allowus to conclude that the strongCarrollian structure is too strong to define asymptotic symmetry
groups. This is due to the fact that, as we shall see, we end up losing the spatial translations with
this definition.

Since we are working with only supertranslations, we are working from the start with isometries
(not conformal isometries) that preserve the strong conformal geometry. Hence, we have that the
vector fields 𝜉𝑎 generating the supertranslations are such that the induced metric ℎ̃𝑎𝑏 and the normal
vector 𝑛𝑎 respect

£𝜉ℎ̃𝑎𝑏 = 0 and £𝜉𝑛
𝑎 = 0. (170)

To impose the invariance of the strong Carrollian structure, we will also impose that 𝜉𝑎 should be
such that

£𝜉∇̃𝑎 = 0. (171)

If we can provide meaning to this equation (which can be done), it will be a natural condition to
impose if we want the strong Carrollian structure to be preserved.

Here is how we will define the Lie derivative of the covariant derivative. Firstly, we notice that
the Lie derivative can be thought of as a difference between two geometrical objects at a point. The
difference between two covariant derivatives is a (1, 2)-tensor, so the Lie derivative of the covariant
derivative will be a (1, 2)-tensor. That being said, we will define £𝜉∇̃𝑎 by demanding that

£𝜉(∇̃𝑎 𝜓
𝑏) = (£𝜉∇̃𝑎 )𝜓

𝑏 + ∇̃𝑎 (£𝜉𝜓
𝑏). (172)

Using Eq. (55) on page 14 and solving for (£𝜉∇̃𝑎 )𝜓𝑏 leads us to

(£𝜉∇̃𝑎 )𝜓
𝑏 = 𝜉𝑐(∇̃𝑐 ∇̃𝑎 − ∇̃𝑎 ∇̃𝑐 )𝜓

𝑏 + 𝜓𝑑∇̃𝑎 ∇̃𝑑 𝜉
𝑏, (173a)

= 𝑅 𝑏
𝑎𝑐𝑑 𝜉𝑐𝜓𝑑 + 𝜓𝑑∇̃𝑎 ∇̃𝑑 𝜉

𝑏, (173b)

where the second step is merely an use of the definition of the Riemann tensor along with some
simplification. Notice that 𝑅 𝑑

𝑎𝑏𝑐 is the Riemann tensor associated with ∇̃𝑎 . We should mention
that this calculation assumes implicitly that the covariant derivative is torsionless, as otherwise the
torsion tensor would play a role in the equations above.

We want to impose Eq. (171). Thus, we can impose that (£𝜉∇̃𝑎 )𝜓𝑏 = 0 for all vectors 𝜓𝑎. This
leads to

𝑅 𝑏
𝑎𝑐𝑑 𝜉𝑐𝜓𝑑 + 𝜓𝑑∇̃𝑎 ∇̃𝑑 𝜉

𝑏 = 0 (174)

for all vectors 𝜓𝑎. Hence, it must hold that

𝑅 𝑏
𝑎𝑐𝑑 𝜉𝑐 + ∇̃𝑎 ∇̃𝑑 𝜉

𝑏 = 0. (175)
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To solve this equation, it is convenient to pick ∇̃𝑎 = 𝐷𝑎 , the Levi-Civita connection on the sphere.
This implies that 𝑅 𝑑

𝑎𝑏𝑐 contracted with 𝑛𝑎 in any of its indices will vanish. Recalling that the general
expression for a vector field generating a supertranslation is (Eq. (161) on page 38)

𝜉𝑎 = 𝑓𝑛𝑎, (176)

where 𝑓 ∈ 𝒞∞(𝕊2), we get that
𝑓𝑅 𝑏

𝑎𝑐𝑑 𝑛𝑐 + 𝐷𝑎𝐷𝑑 (𝑓𝑛
𝑏) = 0. (177)

It then follows that
𝐷𝑎𝐷𝑏 𝑓 = 0. (178)

Using stereographic coordinates, we conclude using Eq. (63) on page 17 that this equation
corresponds to imposing that

𝜕𝜁 𝜕𝜁𝑓 = − 2𝜁̄
1 + 𝜁𝜁̄

𝜕𝜁𝑓, (179a)

𝜕𝜁̄𝜕𝜁̄𝑓 = − 2𝜁
1 + 𝜁𝜁̄

𝜕𝜁̄𝑓, (179b)

𝜕𝜁 𝜕𝜁̄𝑓 = 0, (179c)

𝜕𝜁̄𝜕𝜁𝑓 = 0. (179d)

Denote 𝑓𝜁 = 𝜕𝜁𝑓 and 𝑓𝜁̄ = 𝜕𝜁̄𝑓. Then Eq. (179d) tells us that 𝑓𝜁 is an analytic function of 𝜁, and,
equivalently, bears no dependence on 𝜁̄. Thus, the left-hand side of Eq. (179a) does not depend
on 𝜁̄, but the right-hand side does. This is only possible if both of them vanish. Hence, 𝑓𝜁 = 0.
Similarly, 𝑓𝜁̄ = 0. We thus get to the system of differential equations

{
𝜕𝜁𝑓 = 0,

𝜕𝜁̄𝑓 = 0,
(180)

which is solved by 𝑓 = constant.
Therefore, imposing the preservation of the strong Carrollian structure imposes that the func-

tion 𝑓 is a constant. On the one hand, this does rule out the supertranslations. On the other hand,
it also rules out spatial translations. We thus conclude the strong Carrollian structure is way too
strong to be imposed on the asymptotic symmetry group.
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