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Preface

Of all the entities I have encountered in my life in physics, none approaches the black
hole in fascination. And none, I think, is a more important constituent of this universe
we call home. The black hole epitomizes the revolution wrought by general relativity. It
pushes to an extreme—and therefore tests to the limit—the features of general relativity
(the dynamics of curved spacetime) that set it apart from special relativity (the physics
of static, “flat” spacetime) and the earlier mechanics of Newton. Spacetime curvature.
Geometry as part of physics. Gravitational radiation. All of these things become, with
black holes, not tiny corrections to older physics, but the essence of newer physics.
John Archibald Wheeler [2, p. 312]

This book started in 2024, when I decided to apply as a tutor to the V ICTP-SAIFR Summer School
for Young Physicists. This is an innovative summer school which allows high school students to
experience a little bit of advanced topics in physics. The projects developed by the students can
involve pretty advanced physics, but the idea is still that they get their hands on the numbers. While
thinking about which topic I could cover on a project for the summer school, I thought about black
holes.

Black holes are some of the most mysterious regions of spacetime. They are a prediction of general
relativity—presently our best theory for describing all gravitational phenomena—that challenge a
lot of common sense. These regions of spacetime involve such intense gravitational fields that they
literally trap everything that enters them, and not even light can escape their influence.

The full description of black holes involves intricate mathematical calculations relying on differen-
tial geometry. Differential geometry is a generalization of Euclidean (or plane) geometry to situations
in which space can be curved. This means, for example, that parallel lines may cross, the internal
angles of triangles may add to more or less than 180°, and so on. When these ideas are applied to
space and time simultaneously while following the laws of relativity, we obtain a mathematical theory
describing the gravitational aspects of our universe to astonishing precision.

Differential geometry is a complex subject, and there are profound monographs discussing many
different aspects of black hole physics. It may come as a surprise, then, that some calculations in
black hole physics can be carried out with elementary algebra. I noticed this when I recalled one
of the problems on chapter 12 of the famous general relativity textbook by Wald [3], which has a
reputation for being fairly advanced. It was problem 4, discussing the energy emitted in a collision of
two rotating black holes. While this particular problem was based on actual physics papers [4-6], it
surprisingly could be solved with simple methods once you knew the right tricks. Remembering it
made me wonder how many other problems in black hole physics could be addressed in a similar
way, with high school methods at most. It turned out to be more than you would expect.

You see, black holes in equilibrium are characterized by a handful of quantities—typically the
mass, electric charge, and spin—which obey a few simple laws, nowadays known as the laws of black
hole thermodynamics. While these laws are actually detailed differential geometry theorems, they
yield simple expressions that can be used to perform calculations that, otherwise, would be much
more difficult and technical. Once you know these theorems, you get to a land of simplicity in which
many results can be calculated and played with.

This felt like a nice fit to the summer school, so I decided to pursue it. I started writing my
“lecture notes” for the tutoring sessions, which would eventually turn into this book. I also taught a
very similar course at the II Sdo Paulo School on Gravitational Physics, which further contributed
to the present version. Currently, my goal with this text is to introduce the main ideas behind what
are black holes and then the laws of black hole thermodynamics. Using them, we can make some
simple calculations to understand how these objects behave, and why black hole thermodynamics is
so surprising and interesting.


https://outreach.ictp-saifr.org/escolaverao/
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While I use the terminology “black hole thermodynamics” often, I am not sure I would call
everything in here by that. “Black hole physics” is fair, though. A few topics simply involve black
holes, but focus on other properties that I could not resist to include. Partially because I was afraid I
would run out of material in the sessions and wanted to be ready for that. Still, the spirit of including
simple calculations is ubiquitous.

Since the goal is for the reader to work out some calculations, the text is filled with exercises.
In my opinion, that is what truly distinguishes this book from most outreach books on black holes.
This time, you get to have some of the fun of the calculations as well. While at first this may sound
terrifying, in my experience it feels really nice to be able to get to a result yourself, or to understand
how the number follow from the principles. Furthermore, seeing the area theorem in action is very
helpful in understanding why we care so much about it!

Given that the text has many exercises, choosing whether to include solutions was far from trivial.
The tricky bit about physics as a profession is that you always need to figure out the answers for
yourself and try to understand whether they are right without someone else telling you. Hence, I was
really tempted not to include the solutions. I ended up including them, because the presentation in
this notes is very unusual. In a standard textbook, you can start consulting other sources to understand
the ideas better. In research, you check related papers. I am afraid, however, that this book may be
a bit one-of-a-kind, and thus it would be slightly too cruel to expect the readers to check general
relativity textbooks in order to better understand one or other exercise.

Finish the preface

1 Why Do Things Fall?

Some questions about the Universe are so simple anyone could ask them. Yet, they are so profound
we can still learn a great deal about reality by attempting to answer them. Some of my favorite
examples are

how did the universe begin?

what is time?

what are things made of?

can we go back in time?

why do things fall?

I like to call them “silly big questions”. While they are very simple to ask, they are very difficult to
answer.

Let us think for a moment about why do things fall. In Ancient Greece, the answer had to do with
what things are made of. Aristotle, for example, believed everything was made out of five elements.
These were earth, water, air, fire, and aether. Aether composed the heavenly bodies, while the other
elements composed everything we see and find on Earth. The reason things fall is then their natural
motion. Each element has a natural tendency to be somewhere. The natural tendency of earth is
to stay close to the center of the Earth. The natural tendency of fire is to rise. Water and air are in
between them. By following these rules, things fall. A rock falls because falling is its nature.

The nature of matter also determines how objects move. The four elements that occur on the
Earth have the nature to move on straight lines, while aether moves in circles. This is Aristotle’s
explanation for why the Moon orbits the Earth, for example, while throwing a rock does not yield the
same effect.

Let us then see what happens when we throw a rock away from us. At first, the rock moves on a
straight line (let us say a nearly horizontal line, for example). This is known as violent, or unnatural,
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motion, because the rock was forced to move on this path by being thrown. At some point, though,
the rock gets “tired”, and returns to its natural motion. The nature of the rock is to go closer to the
center of the Earth, so it falls down in a straight line.

This may seem silly at first. One of the first things one studies in a physics class is how falling
objects actually draw parabolas, which look nothing like two straight lines in a row. The key to notice,
however, is that in a physics class one is ignoring drag, while Aristotle did not do this. In fact, it
can be shown that Aristotelian physics is in good match with experiment within the limitations the
Greeks had at the time. The main difference between them and Newtonian mechanics is that their
description always assumed motion inside a fluid (air).

In this sense, Aristotle was not wrong. It is more accurate to say he was not very precise. Aris-
totelian physics provides a good description of day-to-day physics in the sense it matches experiment,
but it fails in more extreme situations.

In high school, and in early undergraduate physics courses, we learn about Newtonian mechanics.
Newtonian mechanics is based around three laws.

Newton’s First Law: objects tend to retain their state of motion except under the influence of a
force.

Newton’s Second Law: under the influence of a force F, the acceleration a inputted on an object is
given by F = ma, where m is the object’s mass.

Newton’s Third Law: if an object acts on another with a force F,, the other reacts on the first with
a force Fy of magnitude F = F, and opposite direction.

These are the basics for Newtonian mechanics. When solving practical problems, we typically need to
figure out which force is acting, find the acceleration, and then use it to compute the position as a
function of time.

In this new framework, what is the explanation for things falling? According to Newton, things
fall because there is a force between any two objects with mass that has the tendency of making them

attract. The intensity of the force is
GMm

F = 2

. (1.D

Above, G is the constant
G =6.67430(15) x 10 ' m® kg~ 's72, (1.2)

known as Newton’s universal constant of gravitation. M and m are the masses of the two bodies we
are considering, and r is the distance between them.

Eq. (1.1) works well when describing a lot of things. For instance, it can be used as the basis for
discussing the motion of planets! Yet, it is still imprecise in some senses. For example, it completely
ignores the shape of the objects we are considering. Objects with very different shapes may actually
experience gravity in a slightly different way, and Eq. (1.1) actually holds only for spheres (r is the
distance between their centers). It is possible to improve our description to account for this, but the
point is that there are always imprecisions in any physical theory.

This can be disturbing. We moved from Aristotelian physics to Newtonian physics and we are still
working with a theory that is wrong! Does this mean science is wrong? Not quite.

Let us consider an interesting example. Suppose you are holding an apple of mass m at a height
h above the ground. What is the gravitational force between the Earth and the apple? The answer is

GMgm

where Mg is the Earth’s mass and Rg, is its radius. This time I ignored the direction for simplicity (I
will do this sometimes). Let me write this expression in a different way. Write is as
Fe GMgm 1

© Re? (1+h/Rg)*’

(1.4

4
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This is still the same equation, but it hints at something important: h/Rg is usually very small.
Let us say we are holding the apple at about h &~ 10m. The radius of the Earth is roughly
Rg ~ 6400km. In this case, we get

h 10m
— ~ —— &~ 0.000002. (1.5)
Rg 6400km
Hence, we have the fraction
1 5 0.999999 688 (1.6)
(+h/Rg)> ’ ‘

which is very close to 1. Hence, the height at which we hold the apple almost does not matter! We

could write
GMgm
F ~ 5
Rg

to a very good precision! This is why many physics problems assume the weight of an object to be
constant.

It this wrong? Not really. Physics is an experimental science. The true question one should ask
is whether our experiments can measure the small differences between our approximation and the
“correct” result. Since every measurement comes with an uncertainty, we can ignore effects that would
be hidden in the uncertainty anyway.

The modern point of view is that all known physical theories are approximations. We do not have
any “right” theories, only precise theories. And that is okay! While one could say all theories are
wrong, what is truly important is that some of them are useful. Aristotle’s principles fail in scenarios
that are much far from what he originally considered, but in some scenarios we get good results and
can use that to understand the world.

What about Newtonian physics? How well does it do? While it is a great framework, it also has
its drawbacks. For example, it usually does not match experiment when things are moving too fast or
the gravitational fields are too strong. For this, we need a new framework, known as relativity. Even
relativity is not perfect, because it still fails when things are too small. In fact, to this day we still do
not know how to describe gravitational fields at very small length scales in a precise way.

(1.7)

Problems

Exercise 1 [Universality of Gravity]:
An interesting feature of gravity is that its attraction is universal. Show that the acceleration due to
Newtonian gravity is the same for all objects, regardless of their mass. s

Solution:
Using Newton’s law of gravitation and Newton’s second law we find

.  GM
p=_2tMs (1.8a)
r2
GM
md =———"F, (1.8b)
r
GM
G=——F. (1.80)
rZ

Hence, the masses of the falling objects cancel out. The acceleration depends only on the position
of the object and on the source of the gravitational field. |
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2 Basic Ideas of Relativity

Our best theory of how space, time, and gravity works is the general theory of relativity. General
relativity is a very rich subject which to this day is being researched. As such, it can be extremely
elusive and complicated, but it is equally fascinating. While a complete description of relativity at
high school level is impossible, we can still discuss some of its basic features.

Given that physics is an experimental science, it is always safer to think in terms of experiments
and measurements. To get a feeling for what we know is relativity, let us begin by picturing moving
things. Motion tends to be an intuitive concept in physics.

Suppose Alice is driving a car and Bob is watching from the sidewalk. There are many physical
questions we could ask about this scenario. We can ask what is the velocity of the car, its position,
its temperature, and so on. Within physics, it does not make sense to ask, for example, what are
the car’s feelings at the moment. While one could philosophically inquire whether the car has any
feelings, we have no way of measuring it.

Let us thus consider the car’s velocity. According to Alice, the car is at rest. According to Bob, the
car has a non-vanishing velocity. Their measures of velocity disagree. How is this possible?

The key point to be understood is that the word “velocity”, by itself, has no meaning. Even in
Newtonian physics, different observers can disagree on what they call “velocity”. This is because
velocity is defined relative to a given observer, and not in an absolute sense. Hence, we can talk about
the velocity of the car relative to Alice, or to Bob, but not about an “absolute velocity”.

It is important to notice that measurements are not relative. If both Alice and Bob measure the
“velocity relative to Bob”, they both encounter the same result. If a traffic radar measures the velocity
of Alice’s car and she ends up getting a ticket, both Alice and Bob will agree she received the ticket.
This is true even if the velocity of the car relative to Alice was zero. The reason is because “velocity
relative to Alice” and “velocity relative to Bob” are different things, even though they share the term
“velocity”.

The same is true for many other things. For example, position. As I am writing, my computer
screen is half a meter in front of me, but it definitely is not half a meter in front of you. When
measuring the position of my computer, we always need to specify relative to what. The reason is
that we need to specify how the measurement is made. If I stretch a tape measure from my nose to
my computer, I get a result. If you stretch a tape measure from your nose to my computer, you get
a different result. We can both agree on each other’s results, while still disagreeing on what is the
distance to the computer (because each one of calls calls a different thing by the name “distance”).

The core ideas of relativity concern which physical quantities are relative (i.e., must always be
stated relative to something) and which are not. The main invariant quantity is the speed of light.
All non-accelerating observers will always agree on what is the value of the speed of light. Any
non-accelerating observer will measure it to be

¢ =299792458ms . 2.1)

Notice this did not need to be the case. As we just argued, Alice and Bob can disagree on what is
the speed of a car (because the speed relative to Alice and the speed relative to Bob are different
concepts). Nevertheless, it turns out that the notion of speed of light relative to any non-accelerating
observer is always the same.

This has very interesting consequences. For example, in Newtonian physics the notion of time is
absolute. In this case, both Alice and Bob agree that the car’s engine has been running for, say twenty
minutes. All observers would agree on how long something has took if the world was Newtonian.
Yet, it is not. And this changes a lot.

In relativistic physics, time is relative. The meaning of this is that we cannot talk about how much
time it took for something to happen. Only about how much time it took relative to some observer.
This is very similar to how “what is the distance to Nick’s computer?” does not have an answer unless
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you specify how this distance should be measure. Is is the distance relative to me? To you? To the
Pope? Each of these cases have a different possibility. In relativity, the same is true of time.

I always like to think about this in terms of watches. Let us consider the famous twin paradox
experiment. Say Alice and Bob are twins, for the sake of the story. We assume one of them, Alice,
enters a spaceship, travels to a distant star, and comes back. Bob, meanwhile, stays on Earth. How
long did the travel took?

According to Alice’s watch, the travel took a certain amount of time. Let us say five year. According
to Bob’s watch, it took longer. For example, it may have taken ten years. The clocks can disagree
because in relativity there is no such thing as “the” time. There is only time relative to Bob’s watch,
there is time relative to Alice’s watch, and so on. The very concept of time is relative. It does not
make sense to ask how long it took for something to happen without specifying how you will be
measuring the duration (for instance, what trajectory the clock will make during the measurement).

This leads to curious scenarios. The “paradox” in the twin paradox is due to the fact that Alice
and Bob are twins, by assumption, but at the end of the journey Bob is (literally) five years older than
Alice. This number (five years) assumes Alice measured five years on her watch and Bob measured
ten years in his, but it is always true that the twin who stays on Earth ends up the oldest at the end.
The reason is that clocks that accelerate always run slower (i.e., tick less) than clocks that do not.
Since Alice eventually has to turn back to return to Earth, she has to accelerate at some point. Since
Bob never accelerates, his clock runs faster.

It should be clear that this is not a design feature. The effect does not depend on the watches any
more than the distance to my computer depend on which tape measure you use. It depends on how
the measurement is made, not which instrument is used. For example, suppose we used “aging” as a
measurement apparatus. This is very imprecise, but we can tell whether Alice and Bob are in their
twenties or in their sixties, for example. Then, it is completely possible for them to have the same
age at Alice’s departure, but for Bob to be significantly older at her return. Bob’s body will age faster
than Alice’s. The reason is because time itself only makes sense relative to something, and thus “time
relative to Alice” and “time relative to Bob” are different things.

The relativity of time is not the only interesting consequence of relativity. Another curious result
is the expression that mass is, in fact, a form of energy. One can show that an object at rest with mass
m has an energy content

E =mc?, (2.2)

which is perhaps the most famous formula in physics. This energy can be extracted and transformed
into other forms, and as thus it is a notion of energy just as valid as any other one.

The fact that the speed of light is the same for all non-accelerated observers also considerably
changes the behavior of gravity. In fact, to understand how gravity works in this new setup, we can
no longer treat it as a “force”. You see, a key problem in Newton’s theory of gravity was explaining
how gravity was transmitted between two objects. How does the Moon knows the Earth is there in
order to orbit it? How does an apple know in which direction it should fall?

The answer comes in the form of general relativity! We will study many properties of general
relativity, but now is a good moment to list and explain a few general features.

The first curious aspect is what I already mentioned: gravity is no longer a force. Instead, it is
the universe enforcing inertia. In Newtonian physics, Newton’s first law states that objects have a
tendency to retain their state of motion, except under the influence of an external force. This is known
as inertia. It is manifests, for example, when you are sitting in a car that makes a sharp turn. You feel
a pull toward the outer side of the curve. While that may seem like a force, it is a “fictitious force”, or
“inertial force”. There is nothing pulling you, but it feels like it because your body is trying to keep
moving in a straight line (according to the principle of inertia), while the car is forcibly making a
curve. The net result is you are pulled outward.

“General” is in opposition to “special” relativity, which embodies the consequences of relativity in the absence of gravity.
It is a simplified case that can be used as an approximation when gravity is not important.
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To reconcile gravity with the fixed and finite speed of light, we need to accept it as a similar effect.
The orbit of the Moon around Earth and the fall of an apple toward the ground are inertial. They are
merely objects retaining their state of motion along spacetime. The “unnatural” behavior is to stop
these orbits and falls. For instance, we feel pushed to ground not because gravity is pulling us down,
but rather because the ground if pushing us up. We do not feel the force of gravity toward the center
of the Earth, but rather the force of the floor keeping us in place.

How come this be? The answer is that spacetime is curved. Motion in curved spaces naturally
leads to effects similar to fall. For example, consider two people on Earth. Both of them start walking
North on straight lines along a meridian. Even though they are walking on straight lines, they end up
meeting each other at the North pole. They naturally moved toward each other, even though they did
not make any curves (for example, they always walked in the direction of their own noses).

What curves spacetime? Everything. In general relativity, it is common to call everything that is
on top of spacetime as matter. Alice, Bob, their car, their watches, atoms, even light. And all of these
things curve spacetime. As Wheeler [2] famously put it: “Spacetime tells matter how to move; matter
tells spacetime how to curve.”

Gravity is a cosmic dance between the contents of the Universe. Gravitational phenomena are
now intrinsically linked to the structure of spacetime itself. The reason the Moon orbits the Earth is
because the presence of the Earth curves spacetime in a certain way, and the motion of the Moon on
this curved spacetime is such that it orbits the Earth. An apple falls to the Earth by simply moving on
the curved spacetime inertially. When it hits the ground, the floor exerts a force on the apple and
stops this motion.

As a final comment for now, it is interesting to consider what happens in some extreme scenarios,
when the motion of matter on spacetime is very accelerated. For example, two stars orbiting each
other. Their motion constantly alters the curvature of spacetime and, incredibly, end up emitting
“gravitational waves”. Similarly to how disturbing the surface of a lake leads to waves moving away
from the disturbance, the motion of matter on can create ripples in spacetime itself that will be
transmitted to long distances later on. These waves can carry away energy from the system. If the
stars merge into a single object, for example, the remnant will typically have less mass than the
original pair of stars, because some of the energy got carried away

3 The Schwarzschild Black Hole

Black holes were originally predicted in the framework of general relativity, the best theory of
gravitational phenomena we have to this day. General relativity was originally published by Albert
Einstein in 1915, and it was originally thought that the equations governing the general relativistic
gravitational field—presently known as the Einstein field equations—were too difficult to be solved.
Nevertheless, Schwarzschild [7] found an exact solution in 1916.

Schwarzschild had considered a specific case of the Einstein field equations. He assumed the
universe contained a single mass, with mass M, and considered the gravitational field around (but
outside) the mass. This mass was taken to be spherically symmetric and to be static, i.e., to not change
with time. These assumptions considerably simplify the equations and yield a relatively simple result.

The full details of how the gravitational field works are intricate, but we can write, for example,
the acceleration one must exert on a small body to keep it at a constant distance from the mass M. In
Newtonian gravity, the gravitational force is given by Eq. (1.1), and hence to keep a small body of
mass m still at a distance r from the mass M we need to apply a force with magnitude

GMm

2 (3.1)

Fyg =

The two forces then cancel out and the small body can stand at rest at a fixed distance from M.
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In the Schwarzschild solution, the force that must be exerted on the small body of mass m to keep
it still at a distance r from the mass M is

NI

(3.2)

GMm(1 B 2GM)_

For=
72

c?r

For large values of r, the term in parentheses is approximately 1 and we recover the Newtonian
expression. However, for smaller values of r we get an interesting phenomenon. For

2GM
r :RS = CZ

3.3)

we find that Fgp is infinite. Hence, we would need an infinite force to keep a small particle hovering
at a distance Rg from the center of the mass M. Rg is known as the Schwarzschild radius.

Since I earlier told you gravity is not a force, it may feel weird for me to talk about Fgy as a
force. The key observation is that Fgp is not the force of gravity, but the force required to counter the
gravitational pull. For example, this is not the force you feel toward the Earth (there is no such force
in general relativity). This is the force the floor needs to exert on your feet to keep you still on the
ground.

This suggests a weird behavior, which is the signature of a black hole: once you fall in, it is
impossible to come out. Once something falls at r < Rg, then it is gone forever. Not even an infinite
force would be able to bring it back to the surface.

Since Schwarzschild’s solution only assumes a central mass with spherical symmetry, we could
also use it to model the outside of a star. For example, if we assume the Sun to be roughly spherically
symmetric, then the Schwarzschild solution would describe its gravitational field on the outside. In
this case, how large is the Schwarzschild radius? Since the mass of the Sun is Mg &~ 1.99 x 10°kg,
the Schwarzschild radius of the Sun is Rg o ~ 2.95km. However, the radius of the Sun is Ry ~
6.96 x 10° km. Hence, the Schwarzschild radius of the Sun is much smaller than the radius of the
Sun, meaning the Schwarzschild radius is well inside the Sun. Since the Schwarzschild solution only
holds outside the Sun, we never get to the Schwarzschild radius. This means that for you to get to
the Schwarzschild radius, you may need to find an object that is extremely compact. It needs to store
a lot of mass in a relatively small region.

The weirdness of the Schwarzschild solution does not end there. When dealing with general
relativity, the geometry of spacetime is encoded in an object known as the metric. And the metric
obtained by Schwarzschild seemed to yield strange results both at the Schwarzschild radius and at
the origin r = 0 (while this is not a complete argument, do notice that Eq. (3.2) diverges again at
r = 0). Namely, the metric achieved infinite values in these points, and hence it seemed like the
geometry could be very problematic.

In fact, there is not a problem with the metric having strange behaviors in some points. This is
due to the fact that the metric depends on the choice of coordinates you make. General relativity
describes spacetime in a way that is very similar to how cartographers describe the Earth, using the
same mathematics behind maps and atlases. When you look at a map of the world, there is always
a distortion: for example, the areas of the countries near the poles may be much larger than they
actually are, or the shapes of some countries and continents may be distorted. It is in fact impossible
to make a flat map of the Earth that does not include any sort of distortion. The same thing can
happen in general relativity. Some maps yield issues and may lead to a weird behavior of the metric.
Hence, before blaming the metric, we must find out whether the problem lies in the metric or in the
map we are using to study the spacetime.

These problems that can occur in the metric are known as singularities. If the problem is actually
in the maps we are using, we say it is a coordinate singularity (because it is due to the coordinates in
the map). If the problem is indeed in the metric, we say it is a physical singularity. Many physical
singularities involve phenomena such as infinite curvature (i.e., infinite gravitational field), but this is
not always the case.
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We are thus left with a few questions at hand. Are the singularities in the Schwarzschild spacetime
physical or not? Furthermore, is there even any sort of object in the universe that is so compact it is
actually possible to reach the Schwarzschild radius?

The singularity at the heart of the Schwarzschild solution (r = 0) is physical. One can show that
a quantity known as the Kretschmann scalar diverges at r = 0. The Kretschmann scalar is a quantity
that does not depend on the map you use (similarly to how, for example, the temperature of the
Earth at each point does not depend on which map you use), and hence if it diverges for one choice
of coordinates it diverges for all. Furthermore, it is a geometrical quantity measuring a few aspects of
the curvature of the spacetime, and therefore it has physical meaning. One can say the gravitational
field is infinite at r = 0. Or, even better, would be infinite: physical singularities are not counted as
part of spacetime, because general relativity cannot reach those points and the metric never makes
sense there.

The singularity at the Schwarzschild radius is a coordinate singularity. By changing from one
system of coordinates to another, the problems with the metric disappear, and this was noticed by
explicit constructions of new coordinate systems that did not shown any problem. The force needed to
keep an object at a fixed distance r = Ry is still infinite: this is a physical and measurable observable
that does not change with coordinate changes. However, the metric is well behaved there. This has
a simple physical interpretation. While there is nothing out of the ordinary at r = Rg (in the sense
that there are no physical barriers or infinite gravitational field or anything of the sense), it is not
possible to move from r < Rg to r > Rg, regardless of how powerful your rocket engines are. No
force is sufficient to escape the region with r < Rg. Since the effects of gravity are the same for all
objects, this holds true for everything. In particular, not even light is capable of escaping this region.
Nowadays, we say this region is a black hole.

There is still the question of whether there are any black holes in the universe. Is it possible to
concentrate enough matter in a region so that it becomes a black hole? In other words, is it possible
to concentrate an amount of matter inside its own Schwarzschild radius?

The answer is positive, and the first example was given by Oppenheimer and Snyder [8]. They
considered a simple model for a very heavy star and showed that it is possible for the star to contract
so much it eventually crosses its own Schwarzschild radius and becomes a Schwarzschild black hole.
Hence, these sorts of objects could exist in physically interesting scenarios, as opposed to being a
mere mathematical abstraction.

Problems

Exercise 2 [Black Stars]:
Before the notion of black hole emerged in general relativity, the idea of “black stars” had already
occurred to earlier physicists working in Newtonian gravity. Let us investigate this scenario.

(a) Consider a spherical star with mass M and radius R. The escape velocity v, is defined as the
initial upward velocity a particle should have so that it can get infinitely far away from the
star and have zero kinetic energy by the time it reaches infinity. Find an expression for v, in
terms of M and R.

(b) Assume now that light has a finite speed c. What is the radius R, that a star with mass M
must have for the escape velocity to be v.,. = ¢? What happens to the escape velocity if the
radius is even smaller?

(c) Supposing light is pulled down by gravity, justify why it would make sense for an observer at
infinity to call a star with radius smaller than R, a black star.

(d) Could a black star be considered a black hole? oY

10
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Solution:
Within Newtonian gravity, the potential energy V for a particle of mass m at a distance r from a

mass M is M
v=—1rT (3.4)
r

The kinetic energy, meanwhile, is given by
K=—. (3.5)

(a) Atinfinity, a particle that escaped with escape velocity should have zero velocity. Since the
potential energy vanishes at infinite distances, this means the total energy must vanish at
infinity. Conservation of energy then dictates that, at the surface,

mvZ. GMm
— &€ =

2 R

2GM
Vo= \| o 3.7)

(b) By using the result from the previous item, we find

=0. (3.6)

Hence,

2GM
c2

R, = . (3.8)

If the radius was smaller, the escape velocity would be larger than the speed of light.

(c) If R <R,, then light can never escape to infinity, as it is pulled back by the collapsed body. In
this sense, it is a black star, because an observer at infinity cannot see it.

(d) No. Objects at the surface of a black star cannot escape to infinity, but they can still leave the
surface. [ |

Exercise 3 [Density of a Black Hole]:

Consider a black hole of mass M. Let us approximate its volume by the volume of a sphere with the
radius given by the Schwarzschild radius. This is not a precise approximation, because spacetime
is really curved near a black hole and because the notion of “volume of a black hole” does not
really make sense (it is actually infinite). Nevertheless, it should give us a rough idea of what is
the volume of an object that almost collapsed to a black hole. Compute the mass density of the
object assuming it to be homogeneous. Does the density increase or decrease with the mass? Is
it possible for an object about to collapse to black hole to have approximately the density of air

(about 1.2kgm™)? If so, how massive would it be and how large would it be? X
Solution:
The Schwarzschild radius is
2GM
RS S 5 (3.9)
c
Hence, the “volume of a Schwarzschild black hole” would be
4m
Ve = 5 RS, (3.10a)
32nG3M3
= —. 3.10b
306 ( )

11
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The “density of a Schwarzschild black hole” is thus

Ppy = M (3.11a)
BH — 7, » °
Ven
3c®
_ , 3.11b
32nG3M?2 ( )
M. \2
~ 1.843 x 10" kgm—3(ﬁe) , (3.11¢)
where M, is the mass of the Sun. Notice this density decreases with the mass.
To reach the density of air, we would need
M ~3.92 x 10° M,,. (3.12)
The Schwarzschild radius is then
Rg~1.16 x 101¥m ~ 77.4au, (3.13)
where 1 au is the average distance between the Sun and the Earth. |

Exercise 4 [ Negative Masses and a Naked Singularity]:

What happens to the Schwarzschild radius if the mass of the black hole is negative? Since the
spacetime ends at the singularity at r = 0, and there is no event horizon around it, we call it a
naked singularity. This may seem strange, since the singularity is a point with “infinite gravity”
and we might expect the formation of a horizon before we get to an infinity. To understand this,
show using Newtonian gravity and Newton’s second law, that if there was an object with negative
mass it would repel other objects (regardless of them having positive or negative mass). Hence,
the singularity pushes things away, instead of pulling them closer. Do objects with positive mass
attract or repel hypothetical objects with negative mass?

While most physicists do not believe in the existence of negative masses or naked singularities,
these ideas can be useful thought experiments for us to gather more insight about how gravity
works. oY

Solution:

The Schwarzschild radius becomes negative for M < 0. Negative masses are universally repulsive,
positive masses are universally attractive. This is due to the behavior of the sign of m in F = mad.
The equation is F = |m|d for positive masses, while it is F = —|m|d for negative masses. [ ]

4 What is a Black Hole?

At this stage, it is nice to discuss what we define as a black hole and give some more examples.

The modern definition of a black hole is, in loose terms, that a black hole is a region in spacetime
from which no light rays can reach any observer that goes infinitely far away after infinite time. Let
us understand it.

First, we discuss the observers who “go infinitely far away after infinite time”. This means the
observers are not bound to a small region in spacetime. For example, they can move to very far away,
as opposed to being restricted inside a small piece of spacetime. The goal of mentioning them is to
define what we mean by “outside”. These observers are outside everything we would like to call black
holes (because observers in black holes cannot go to infinity, and hence are not “outside” the black
hole). If there is a region in spacetime whose light rays never reach these “outside” observers, we

12



Black Holes for First-Time Physicists Aguiar Alves

interpret that the light is trapped inside that region. Hence, gravity is so strong not even light can
escape. Therefore, we call that a black hole.

We also need the outside observers to avoid defining black holes in a too loose sense. For instance,
when we say that “a black hole is a region in spacetime from which not even light can escape”, we
are being too loose: using that definition, the entire spacetime is a black hole! Indeed, if a light ray
always has to be somewhere in the universe, then it can never escape the universe. Nevertheless, that
is not what we mean by a black hole. For us, a black hole has to be a finite region. Therefore, we use
the observers that go to infinite as a way of determining who is outside and who is inside a black hole.

Notice that the definition of black hole is not local, i.e., you do not define a black hole by
considering how it behaves in its vicinity. We defined a black hole by saying that no light ray escapes
to infinity ever. This means we need to know the whole history of the universe and everything that
took place inside it to be able to tell which regions are black holes. Hence, it is a very subtle concept.
This is one of the reasons that the mathematics for describing black holes in theoretical physics is
complicated.

Once we know where the black holes are, we find that they have a boundary. This boundary is
the separation between what goes on inside the black hole, and the outside world. For example, in
the Schwarzschild black hole the boundary was the r = Rg surface. We call this the event horizon of
the black hole.

Since the Schwarzschild black hole is spherical, we can now calculate the area of its event horizon.
It is given by?

2GM\?* 167G2*M>
) = oy “4.1)

— 2 _
A—477:RS—477:( 2 o
The area of a black hole is one of its most important properties, as we shall see. One of its interesting
properties is that it is a physical and objective quantity, that does not depend on the choice of
coordinates.

Should I add a Penrose diagram of the Eddington—Finkelstein patch?

5 Charged Black Holes

The Schwarzschild black hole is a vacuum solution. This means it assumes spacetime does not contain
any forms of matter. In general relativity, “matter” is anything that is on top of spacetime. This
includes, for example, light. We know, however, that light exists. How do we deal with it?

Light is an electromagnetic phenomenon. This means it is a property of the so-called electromag-
netic field. In physics, a “field” is something that permeates spacetime and often mediates interactions
among objects on different points of spacetime. As an example, imagine a lake, with a paper boat on
it. If one throws a rock at the lake, the water will be disturbed, and these disturbances will be carried
until the location of the boat, which will then move as a consequence. While the rock and the boat
never really touched, the water mediated an interaction between them. Fields work in similar ways.

We say that objects that interact with the electromagnetic field are “charged”, and the charge
measures how strongly they interact. In other words, the more charged an object is, the more intensely
it interacts with the electromagnetic field. Charge can also be positive or negative, and this modifies
how exactly the interactions happen.

Light is an expression of electromagnetism in the sense it is a disturbance—or, more appropriately,
a wave—moving on the electromagnetic field. Objects cause disturbances on the electromagnetic
field just like the rock wiggles the water, and our eyes can later detect these disturbances just like the
boat shakes when the water waves pass through it.

2This calculation is possible because the r coordinate in the Schwarzschild spacetime is defined so that a sphere with
constant r has area A = 47r?, mimicking the formula we have in Euclidean geometry. Other choices of coordinate could
not have this property.

13
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For the simple case of two spherical particles with charges Q and g, the electromagnetic-mediated
interaction between them respects the force

1 Qq,

F= 7
4meg r2

(5.1)

which is very similar to Newton’s universal law of gravitation, Eq. (1.1). For example, the constant
1/4me, plays a role very similar to that of G. €, is known as the permittivity of free space (or of
vacuum) and the value is

€0 =8.8541878128(13) x 107 12Fm™.. (5.2)

I should mention the similarity between gravity and electromagnetism is superficial. Deep down
the electromagnetic field and the gravitational field are very different. Notably, everything interacts
with gravity, but not everything interacts with electromagnetism.

If there are many charges in spacetime, the complete description of the gravitational field will
be very complicated. But there is a simple case in which we are particularly interested: that in
which a black hole itself is charged. Suppose we got a Schwarzschild black hole and threw in a
charged particle, such as a proton. This would lead to an electromagnetic field in spacetime, and the
electromagnetic field will curve spacetime as well. What is the end result?

This scenario was studied not long after the Schwarzschild solution by, among others, Reissner
and Nordstrom [9, 10]. Hence, the solution for a charged black hole that does not spin is now known
as the Reissner—Nordstrom solution.

If we now assume that the mass M at the center of the spacetime has a charge Q, then the
gravitational field will behave differently. More specifically, if we want to keep a small mass m with
charge q standing still at a distance r from the center, then we need to apply a force

1
GMm  GQ*m 2GM GQ* \*
Frp = — — + _— . 5.3
GR [ r2 4meqc?rd }( c2r  4meyctr? 4meqr? (>:3)
Recall that in Newtonian gravity and using standard electrodynamics the force would be
GMm Qq
Fye = — . 5.4
NG r2 4meqr? -4

Notice this equation combines the Newtonian law of universal gravitation and the Coulomb law of
electrostatics.

We see two interesting changes in Eq. (5.3) when compared to Eq. (5.4). First, there is a correction
factor to the gravitational attraction which is very similar to the one we had in Schwarzschild spacetime.
This is known as a redshift factor and we will get back to it soon. The second new aspect is that the
gravitational attraction does not depend only on the mass of the black hole M, but also on its charge
Q. This is due to the fact that the electromagnetic field also curves spacetime and also gravitates,
and hence the new term corresponds to the gravitation due to the electromagnetic field. Notice, in
particular, that this term does not depend on the test particle’s charge g, nor does it depend on the
sign of Q.

The redshift factor was what allowed us to identify the Schwarzschild radius last time. It led to
an infinite force when we got too close to the black hole. When do we get an infinite force this time?
First we have the origin r = 0, as before. This is indeed a physical singularity. We also get other
singularities by studying the redshift factor. We see the force diverges at the points r. with

2GM GQ*

c2ry  4megctr?

If we multiply both sides by ri we find a quadratic equation, the solution to which is

(5.6)

GM \J G2M2  GQ2
ry = =+ -
c2 c4

4egct’
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If Q = 0, then the two solutions are equal to the Schwarzschild radius. Otherwise, they are different.

Both r = r,. are coordinate singularities and they correspond to different regions in the Reissner—
Nordstrom spacetime. While the inside of a Schwarzschild black hole is very monotonous (the only
option you have once you enter it is to crash into the singularity after a finite amount of time), the
inside of a Reissner-Nordstrom black hole is much more complex. You may keep traveling inside
the black hole and eventually get out in a “new universe”. r, and r_ codify these sorts of structures.
Nowadays, we do not believe the inside of the Reissner—-Nordstrom black hole to be physical—it is
too badly behaved and is likely to change to something less strange once we consider that the real
world is not spherically symmetric. Nevertheless, the outer regions are still of interest. The event
horizon of the black hole is located at the outermost coordinate singularity, r = r,.

We may consider now what is the area of the Reissner-Nordstrom black hole. Since it is spherically
symmetric, it is given by A = 4nrf. The result is then

G2 M2 2 2
Pl PP FR S : (5.7)
ct 4meaGM?2  4me GM?2

For Q = 0 we recover the result we had in Schwarzschild spacetime.

Problems

Exercise 5 [Maximum Charge of a Reissner—-Nordstrom Black Hole]:

In principle, a charged black hole can have as much charge as allowed by the bound you derived
in Exercise 7. In practice, however, this is not what typically happens. Consider a black hole with
mass M and Q. Neglect any effects due to spin. Suppose the proton has charge g > 0 and mass m.
Notice that experimental data states that

2

> Gm>. (5.8)
47T€0

Show that for Q > 0 there are values of Q that satisfy the bound obtained in Exercise 7, but even so
have so much charge that the black hole repels protons instead of attracting them. How large does
Q have to be for this to happen? In this scenario, does the black hole attract or repel electrons?

Conclude that a black hole with too much charge tends to attract and repel charged particles in
such a way that it eventually loses charge. Neglect the relativistic corrections. Y

Solution:
The total force the black hole exerts on the proton is (5.4)

GMm Qq
Fye = — . 5.
NG r2 4meqr2 (59
Hence, if
Q4 Gmm, (5.10)
4meg

then the black hole actually repels the proton instead of attracting it. This means we expect a

bound
< 4meqGMm

q

(5.11)

Hence,
Q? < 4meoGm?

< GM?2. 5.12
4me, q2 ( )

Eq. (5.8) ensures the bound derived on Exercise 7 is respect, and hence our new bound is tighter.
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If we plug in the values of g and m for a proton, then we find the bound

Q< 154C(M£)' (5.13)

©

That means an excess of 9.6 x 102° protons over electrons in an object with the mass of the Sun
(which has about 2 x 10%° kg). We can also write

Q2

<8.1x107%.GM?>. (5.14)
47-560

Exercise 6 [Overcharging a Black Hole]:

Wald [11] considered a few gedankenexperiments (thought experiments) on how one could
try to destroy a black hole. In this problem, we will study one of his arguments. Recall that a
Reissner—-Nordstrom black hole has a maximum charge allowed by the bound derived in Exercise 7.
Consider an extremal black hole, i.e., a black hole with the maximum possible allowed charge.
For simplicity, ignore the role of black hole spin. Suppose then you throw inside the black hole a
charged particle with charge g and mass m. What is the minimum amount of charge the particle
has to have in order to overcharge the black hole once it falls in? Is it possible to overcharge a
black hole by dropping a charged particle around it? What do you expect to happen if we “force”
the particle to go in by accelerating it toward the black hole? (Hint: recall that, in relativity, the
mass of a black hole is an expression of how much energy it contains). Y

Solution:

The particle must satisfy q2/(4me,) > Gm? to overcharge the black hole (with gQ > 0). However,
this means the black hole will repel the charge due to the electromagnetic interaction. If one tries
to “push the charge in”, this will mean doing work on the charge, which means increasing the
energy of the charge. If the charge goes in, so much work had to be done on it that the increase in
mass on the black hole will be larger than the increase in electric charge, and thus the black hole is
not destroyed. [ |

6 Spinning Black Holes

The next stationary (i.e., equilibrium) black hole solution was obtained only in 1963 by Kerr [12].
The Kerr solution describes a mass M spinning with angular momentum J, and it is much more
complicated than the two previous solutions.

Let us first recall what is angular momentum. Angular momentum is a conserved quantity
(meaning the total angular momentum is the same before and after a physical process) that measures
how much a certain object is spinning. The faster the object revolves, the larger the angular momentum.
Furthermore, the mass distribution of the object also influences on how large the angular momentum
will be for a given angular velocity. Shortly, the angular momentum is a quantity that characterizes
how an object is rotating and “how much?” it is rotating.

In the case of a black hole, the angular momentum J is often called “spin”. Angular momentum
is often thought as something that can be broken down in the movement of many different pieces.
For example, the angular momentum of the Earth around the Sun can be computed by considering
how each particle in the Earth is moving. In the case of a black hole, however, it is not possible to
make this decomposition, because the black hole is a spacetime region, not a physical object. When
angular momentum is not decomposable, we often call it spin, or “intrinsic angular momentum” (as
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Figure 1: Illustration of the ergosphere of a rotating black hole. It is impossible to faithfully draw the
physical setup, since it requires representing the curved three-dimensional space between the event
horizon and the ergosphere. Nevertheless, some limited illustrations are possible. The sketches above
show the ergosphere extending outside the black hole’s event horizon. It is wider at the equator and
it touches the black hole’s poles. Left: side view from the equator. Right: top view.

opposed to “orbital angular momentum?”).

Since the Kerr black hole spins, it is not spherically symmetric. Spherical symmetry means all
directions are equivalent, but the axis of rotation of the black hole singles out a preferred direction.
This breaks spherical symmetry. Instead, the symmetries of the Kerr spacetime are the time-translation
symmetry (the black hole keeps spinning at the same angular velocity at all times) and axial symmetry,
meaning that the axis of rotation is the only special direction.

Due to this lack of spherical symmetry, the force needed to keep a particle still in the Kerr spacetime
is much more difficult, and I will not attempt to write it down. In particular, the force depends on the
angle between the center of the spacetime, the axis of rotation, and the position in which the test
mass is located. It does not depend only on the distance to the black hole, as before.

In addition to that, general relativity predicts an effect known as frame-dragging, or Lense-Thirring
precession [13]. Suppose you are standing still above the North pole of a Kerr black hole, along the
axis of rotation. You are being kept above the black hole by a powerful rocket. The frame-dragging
effect is the prediction that the rotation of the black hole will also make your rocket start spinning.
The black hole is a region of spacetime, and spacetime itself is spinning. As a consequence, the spin
is transferred onto nearby objects.

This effect is more intense near the equator of the black hole. In fact, if you are sufficiently close,
the effect is so intense it becomes impossible to stand still at a fixed distance without rotating around
the black hole. Spacetime is dragged around the black hole, and everything in spacetime is dragged
along. This region is known as the ergosphere. It is illustrated on Fig. 1.

Beneath the ergosphere we find the black hole’s event horizon. The event horizon is not spherical,
due to the rotation of the black hole. For sufficiently small spin J, the black hole is just a deformed
sphere. The equator gets enlarged, white the poles are flattened down. The faster the black hole
spins, the more prominent the effect, until the geometry of the horizon is so warped it is impossible
to visualize it in Euclidean space. The largest spin that still admits visualization in three-dimensional
Euclidean space is, up to a sign,

_ V3GM?

J 5 . 6.1

At this point the event horizon is flat at the poles. This is depicted in Fig. 2. The area of the event

horizon of a Kerr black hole is
8nG2M? \ c2J2

As with the Reissner—Nordstrém black hole, we actually get a complex structure inside the black
hole. For example, it is possible to traverse to “different universes”, and the singularity is a ring
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Figure 2: Visual depiction of the event horizon of a Kerr black hole for a few different choices of spin.

Left: J = 0, corresponding to a Schwarzschild black hole. The event horizon is spherical. Middle:
J= Z—GCM 2. The event horizon is “flattened”. Right: J = ‘/2§CGM 2 the maximum spin that still admits a

visualization in Euclidean space. The event horizon is flat at the poles.

(as opposed to a point, which was previously the case). In fact, within the event horizon it is even
possible to travel back in time (but it is still impossible to leave the event horizon back to where you
originally came from). This complex structure is believed to be an artifact of symmetry, rather than
an actual feature present in real black holes.

We are now ready to mix the Reissner—Nordstrom solution and the Kerr solution into a more
general kind of black hole. This more general solution, known as the Kerr-Newman solution, was
obtained by Newman and collaborators in 1965 [14], soon after Kerr’s original metric.

The general aspects of the Kerr—-Newmann metric are very similar to those of the Kerr metric. The
event horizon is not spherical, but rather a “flattened” sphere, and we get Lense-Thirring precession
near the black hole. We also have an ergosphere, a rich structure inside the event horizon, and so on.

For us, the most interesting quantity will be the area of the event horizon. It is given by

28752 2 272 2
AzM(Hz\Jl_ Q cJ Q ) (6.3)

c4 4me,GM2  G2M*  4me,GM?2

Notice that the special cases Q = 0 and J = 0 recover the results we had previously in Egs. (4.1),
(5.7) and (6.2).

Problems

Exercise 7 [Some More Naked Singularities]:

The area of a black hole’s event horizon should always be a real number. With this in mind, show
that there is a maximum amount for how much charge and spin a black hole can have. Black holes
that exhaust this bound are said to be extremal. A Kerr—-Newman solution that does not correspond
to a black hole is an example of a naked singularity. By

Solution:
We can tell from Eq. (6.3) that the area of a Kerr—-Newman black hole is a real number only if

Q2 272
1-— = > 0. 6.4
4ne,GM?2 G2M*4 (64

Rearranging this equation yields
Q2 c2J2
GM*> — +
4meq  GM?2

(6.5)
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7 The No-Hair Theorem

So far, we have discussed a large family of black holes. Something all of them have in common is
that they are stationary, which means they do not change in time (at least as far as classical general
relativity goes). A Kerr—Newman black hole with mass M, charge Q, and spin J will keep having the
very same properties forever.

A key question is then whether there are any other black holes in equilibrium. In other words,
consider the following scenario. Through some astrophysical process, a black hole is formed, and it
eventually “settles down”, so it is no longer evolving. Is this a Kerr—-Newman black hole or could it be
different?

The “no-hair theorem” is the epitome of a collection of results in classical general relativity
establishing that stationary black holes are uniquely characterized by their mass, charge, and spin. In
other words, all stationary black holes are Kerr-Newman black holes. The term “no-hair theorem”
was coined by John A. Wheeler in reference to the idea that “hair” makes it easier to distinguish
people in a crowded room. Since black holes are completely characterized by three parameters, it is
difficult to distinguish them from each other. Nowadays it is common for people to say that “black
holes have no hair” in reference to the no-hair theorem.

The present form of the theorem is not as general as we would like it to be. It assumes some very
strong mathematical hypotheses on the behavior of the spacetime outside the black hole. For this
reason, some authors may prefer to call it the “no-hair conjecture”. In spite of this, it is believed a
stronger version should be valid, and we just have not been able to prove it yet.

The physical conditions for the no-hair theorem are the following ones.

(a) We assume a single isolated black hole, meaning we are ignoring all other content in the
universe.

(b) The black hole is stationary, meaning it is no longer evolving in time.

(c) The only available matter outside the black hole is the electromagnetic field. This means we
are ignoring other things that could roam in the spacetime (such as stars and planets, which
are not of interest), but most importantly we are ignoring the effect of other forces of nature
such as the strong and weak nuclear forces.

Under these conditions, the outside of the black hole (the only region that is accessible for us without
falling into the black hole) is the same as for some Kerr—-Newman black hole. The inside of a
Kerr-Newman black hole is not much trustworthy, so this is not a problem.

For us, this means we can get a lot of insight into black holes by studying the Kerr—Newman
solution.

8 The Penrose Process

I want to consider the question of whether it is possible to extract energy out of a “black
hole”. One might imagine that, since the matter which has fallen through has been lost
for ever, so also is its energy content irrevocably trapped. However, it is not totally clear
to me that this need be the case.
Roger Penrose [15]

Now that we know the main examples of black holes, we can start discussing some general
properties they must satisfy. The main result we want to consider is Hawking’s Area Theorem [4].
We begin with a gedankenexperiment to extract energy from a rotating black hole. At first glance, the
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Figure 3: Illustration of the Penrose process from a top view of a Kerr—Newman black hole. The
dark circle represents the interior of the black hole (beneath the event horizon), while the shaded
orange region represents the ergosphere. A particle is thrown toward the black hole and it splits in
two pieces while in the ergosphere. One of the pieces falls down the event horizon, while the other
manages to escape the black hole with more energy than the original particle had.

idea of extracting energy out of a black hole may seem silly. If by definition a black hole is a region of
spacetime from which nothing can come out, how could energy extraction be possible?

Penrose [15] first exemplified an idea proposed to him by Charles Misner. When two black holes
coalesce, they typically emit gravitational waves in the process. These gravitational waves are often
pictorially described as “ripples through the fabric of space and time”, and what really matters for
us is that they can carry energy. Hence, merging black holes typically emit a little bit of energy in
the merging process. Let us say we have at first two black holes of mass M and that the merging
process emits 2kMc? of energy. Then the final black hole has total mass 2M (1 — k) (we are using
the mass-energy equivalence E = Mc?). If we had four black holes of mass M, we would be able to
do the process twice and get a final black hole of mass 22M (1 — k). If we start with 2" black holes,
doing the process n times means the final black hole has total mass 2"M (1 — k)". No matter how
small k is, if we make n large enough then (1 — k)™ will be a very small number, meaning a lot of the
original mass inside the black holes was emitted in the form of gravitational waves.

There is, however, a more interesting idea [15, 16]. Suppose we throw in an object at the direction
of a Kerr-Newman black hole. Suppose further that, after this object enters the ergosphere, it splits
in two pieces: one of which falls down the event horizon, while the other one exits the ergosphere.
Then what happens? It turns out that, due to the properties of the ergosphere, this splitting procedure
can be arranged so that (to an observer far away from the black hole) the piece that falls down the
hole has negative energy, meaning the piece that comes out of the ergosphere has more energy than
the one that was originally thrown in. In this way, one can mine energy out of a rotating black hole.
This process, known as the Penrose process, is illustrated on Fig. 3.

9 The Irreducible Mass

Now that we know about the Penrose process, how much energy can we extract from, say, a Kerr
black hole? This was addressed by Christodoulou [17]. The decrease in black hole mass caused by
the Penrose process is accompanied by a decrease in the black hole spin. In this sense, the Penrose
process extracts rotational energy from the black hole. Hence, if the black hole eventually becomes a
spinless black hole, no more energy can be extracted. By studying how much energy one can extract
by removing a given amount of spin from a black hole, Christodoulou showed that the black hole
mass can be written in the form
272
9 9 cJ

M? = M2 + ,

T 4G2M?2

1.

9.1
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where M is the black hole’s mass, J its spin, and M;, is its “irreducible mass”, meaning the mass of
the Schwarzschild black hole obtained after all rotational energy has been extracted from the black
hole. Hence, the Penrose process can never make the mass of a black hole smaller than M;.. This
expression assumes the energy has been extracted with maximum efficiency.

It is also possible to factor in electric charge. For a Kerr—Newman black hole, the expression
relating the mass, charge, spin, and irreducible mass is [18]

2 2 272

J

M? =M, + e +— : (9.2)
© 16megGM;, 4G2M2

10 The Area Theorem

Let us now grab Eq. (9.2) and solve for M;,. We find, after some algebraic manipulation,

1 2 272 2
M2=l{o4oy1o & ¢ Q , (10.1)
T4 4me,GM?2 G2M* 4meyGM?2

which is more interesting when expressed as

16tG2M?2 2072 2 272 2
—m:AZM(Z—i_Z\Jl_ Q c*J Q ) (10.2)

ct ct 4me,GM2  G2M*  4me,GM?2

By comparing this equation to Egs. (4.1) and (6.3), we see that the irreducible mass is actually the
mass of a Schwarzschild black hole with the same area as the original Kerr-Newman black hole. The
irreducibility of the irreducible mass can thus be stated as saying that the area of a black hole may
never decrease.

This was originally noticed by Hawking [4], who used more technical methods to establish the
result. Due to the generality of the methods employed by Hawking, his result actually holds for many
black holes (and then the total area of black holes never decreases) and does not need to be restricted
to Kerr—-Newman black holes, which means dynamical black holes are also allowed.

Problems

Exercise 8 [Energy Extraction from a Kerr Black Hole]:
Show that the maximum efficiency of energy extraction obtainable through the Penrose process

for a Kerr black hole is
M—-M, 2-+v2

= ~ 29.3%. 10.3
= 5 0 (10.3)
Hint: the efficiency depends on the spin J. What is the value of J which maximizes the efficiency
and what is the value which minimizes it? X

Solution:

Since the Penrose process extracts rotational energy, the more rotational energy there is available,
the larger the energy that can be extracted. Hence, we consider an extremal Kerr black hole. If we
plug the extremality condition derived on Exercise 7 on Eq. (9.1), we find

Mm*
M? = M2 + : 10.4
LT oy
This is a biquadratic equation. Solving for M yields
M = v2M;,. (10.5)
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Hence, the efficiency is

(10.6a)
M V2M;,

2—1

= V2 , (10.6b)
V2

2—+/2

= ‘/—’ (10.6¢)
2

as expected. [ |

Exercise 9 [Energy Extraction from a Reissner—-Nordstrom Black Hole]:
Show that the maximum efficiency of energy extraction for a Reissner—Nordstrom black hole is

M — Mir.

1
= —-=50%. (10.7)
M 2

The reason one can mine energy out of a Reissner—Nordstrom black hole is that the energy of a
particle of charge q and mass m staying at a radius r is given by

1

2GM GQ* \?

E=mc?1- + 8¢ P (10.8)
c2r  4meyctr? 4megr

which means that if Qg < 0 (the charges have opposite signs) then the energy becomes negative

for sufficiently small r > r . oY
Solution:
As in the Kerr black hole, we start with an extremal black hole. Using this on Eq. (9.2) yields
M2\
M*=(M+—— |, 10.9
( " 4GMir. ) ( )

and solving for M yields
M =2M,,. (10.10)

Hence, the efficiency is

L (10.11a)
==, (10.11b)

as expected. [ |

Exercise 10 [Gravitational Radiation from Colliding Black Holes: Schwarzschild]:

Hawking [4, 5] originally used the area theorem to estimate an upper bound on the gravitational
radiation emitted on the collision of two Kerr black holes—the same process Misner had earlier
suggested could be used to mine energy from black holes. Let us tackle this problem by starting
from the simplest scenario: consider two Schwarzschild black holes of masses M; and M, (assumed
to be very far away and “at rest” so the Schwarzschild solution applies) that merge into a single
black hole of mass M. Estimate an upper bound on the energy that can be emitted in the form of
gravitational waves. Hint: recall that, in relativity, mass is a form of energy with E = Mc?2. Y
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Solution:
Conservation of energy tells us that

M; +M, =M + AEc 2, (10.12)

where AE is the energy emitted in the merger process. If the area of each Schwarzschild black hole
isA;, Ay, and A, then we see that

AEc?=M;+M,—M, (10.13a)
2
c A
=M;+M,——=\| —, 10.13b
1e G\ 167 ¢ )
2
(o} A1 +A2
<My +My——\| /—==, 10.13c
Te G\ 167 ¢ )

=M, + M, — /M7 + M3, (10.13d)

where we used the area theorem in the form A > A; + A, jointly with the fact that x — —/x is a
decreasing function. [ |

Exercise 11 [Gravitational Radiation from Colliding Black Holes: Reissner—Nordstrom ]:
Let us build up on Exercise 10 by introducing charge into the problem. Consider two Reissner—
Nordstrom black holes of masses M; and M, and charges Q; and Q, (assumed to be very far away
and “at rest” so the Reissner—-Nordstrom solution applies) that merge into a single black hole of
mass M and charge Q = Q; + Q,. Estimate an upper bound on the energy that can be emitted in
the form of gravitational waves. Is the emitted energy larger or smaller when the charges have the
same sign? Why is that so? Hint: for x > k2, the function
k2
xX)=Vx+— 10.14
f(x) 7% ( )

is non-decreasing”. by

“You can check this by making a graph for many values of k, but I proved it using calculus.

Solution:
As in Exercise 10, we notice (with the aid of Eq. (9.2)) that

AEc™? =M, +M,—M, (10.15a)
Q2
=M;{+My,—M;, ———, 10.15b
! 2 t 16mte GM;, ( )
2 2
A 16
M+ My — S @ | lem (10.15¢)
G \ 16w 16mepc2 | A
2 2
c GQ
=M; +M,— VA+ ) (10.15d)
T 1/167TG( eoc41/7\)
Next, notice that
Q2
M=M, + ——, (10.16a)
"' 16me,GM;,
M Q?

(10.16b)

i
M;. 16“60GMir.
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M — M, 2
e___ 0 = (10.16¢)
Mir. 16TE€0GMir.
Using the results of Exercise 9 we know that 2M;. > M > M;, . It follows that
M — M;,
0<—<1 (10.17)
Mir.
Hence,
Q2
0L ———<1 (10.18)
16me GM
In terms of area,
G 2
0< Q <1, (10.19)
€octA
and hence
G 2
> —— =k (10.20)
€oct
Bringing everything together, we can use the area theorem to write
AEc™ = My + My — — («/Z\+ Q" ) (10.21a)
! 2 LY 167'[ EoG\/Z ’ ’
2 2
c GQ
=M;+My——| VA +Ay+ ——— |, (10.21b)
! 2 v 167TG( ! 2 60C4\/A1 +A2)
2 1A +A +Qy)% .| 16
=y vy - SR (1t Q) = (10.21¢)

G 167 16megc2 VA +Ay

When the charges have the same sign, the last term is larger, and hence the energy emitted is
smaller. This is consistent with the fact that the electromagnetic force does negative work on the
black holes, as they repel each other electromagnetically. Analogously, opposite signs decrease
the contribution of the last term and increase the energy available to be scattered by the collision.
Notice the areas and masses are not affected by the signs of Q; and Q,. [ |

Exercise 12 [Gravitational Radiation from Colliding Black Holes: Kerr]:

Following on Exercises 10 and 11, we now consider the case of two Kerr black holes. We assume
both of them to be rotating about the same axis, for in this case the total spin is conserved, meaning
the final spin is J = J; + J,. Estimate an upper bound on the energy that can be emitted in the
form of gravitational waves. Is the emitted energy larger or smaller when the spins have the same
sign? It turns out that, in general relativity, bodies spinning in opposite directions experience an
attraction toward each other [6]. Hint: for x2 > k2, the function

kZ
flx)=\x+ = (10.22)

is non-decreasing”. by

?Once again, I proved it with calculus.

Solution:
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AEc?=M;+M,—M,

) c2J2
=M1+M2_ Mr+ 2
\ T aGem?
c*A 4mJ2
:M1+M2_\ 167mG2 * c2A”’
MM 4 A 8422
W T A
Next, we notice that
) ) C2J2
M= = ir. ang2°
4G Mir.
M? c?J?
2 4
Mir. 4G2M1r

Using the result of Exercise 8, we can establish that

M2
1< — <2
Mir.

It will then follow that
c2J?  64n%G%J?

0 = <1,
4G2M;} c0A2
meanin
¢ 64m12G2J>
Al>——
C6

Bringing everything together, we get

AR e g BAEHEETE
LT AenG c6A
c2 6412G2J2

larger.

Exercise 13 [No-Bifurcation Theorem for Schwarzschild

25

> M, + M, — Aj+Ay+ ——
PR JAerG VT oA +A,)

— M.+ M (Al +A2)C4 47TG2J2

TR Tiene2 T o4, 14y

— M.+ Mo — (Al +A2)C4 47'CG2(J1 +J2)2

SR 167G2 c6(A; +A,)

Black Holes]:

Aguiar Alves

Following the solution to Exercise 11, we begin by noticing with the aid of Eq. (9.1) that

(10.23a)

(10.23b)

(10.23¢)

(10.23d)

(10.24a)

(10.24b)

(10.25)

(10.26)

(10.27)

(10.28a)

(10.28b)

(10.28¢)

(10.28d)

As expected, we see the energy emitted is smaller when the spins have the same sign, which is due
to the repulsion arising between them due to relativistic effects. When the spins are antiparallel
(opposite), the black holes are more strongly attracted to each other and the energy emitted is

Another key result about black holes is the no-bifurcation theorem: a single black hole cannot split
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in two or more pieces [5]. Suppose we start with a Schwarzschild black hole of mass M. Prove
that, in the absence of extra initial energy, it is impossible to end with two Schwarzschild black
holes of any mass”. by

%1 am not sure whether the area theorem can be used to prove this in the general case of Kerr-Newman black holes,
but it is possible in the Schwarzschild case.

Solution:
Suppose we could end with two Schwarzschild black holes of masses M; and M,. Then we know
that energy conservation demands

M > M, + M, (10.29)

where we are considering some energy may have been emitted (if there was extra energy at the
beginning, we could get two black holes at the end by collapsing the extra energy instead of merging
it in the black hole). By taking the square of both sides we find

M? > M7 + M3 + 2M; M,. (10.30)

Next, we use the area theorem to establish that

Al +Ay = A (10.31a)
16nM? + 16nM; > 16mM?, (10.31b)
M7+ M3 > M>. (10.31c)
Bringing everything together we find
M} +Mj > M?* > M} + Mj + 2M; M,, (10.32)
which implies
0> 2M; M,. (10.33)

Since M;, M, > 0 (assuming no naked singularities), at least one of the masses must vanish. Hence,
we can only have one black hole at the end. ]

11 A Bit of Thermodynamics

The area of a black hole only grows with time. However, it is not the only quantity in physics with this
property. The notion of “entropy”, which is a core concept in thermodynamics, also has this behavior.

Let us suppose we want to describe a system with a huge number of particles. For example, a gas,
which in typical conditions can have about 1023 particles. It is impractical, and in practice impossible,
to describe the behavior of each of these particles individually. We cannot measure their positions and
velocities, and even if we could the calculations would be so complex we would not learn anything
from them. So how do we deal with them?

The modern approach to these sorts of problems is to use statistical mechanics. This means
using probability theory to describe how the system behaves. Instead of saying what is the position
and velocity of each particle and compute the evolution from there, we assign a probability to each
possible configuration of positions and velocities. Using these probabilities we can study the average
behavior of the gas. While we cannot answer what is the trajectory of a given particle in the gas (we
do not even know where it was at the beginning!), we can discuss the temperature, pressure, volume,
and other properties of the gas.

How can we decide the probability we should give to each configuration? To understand that, let
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us for a moment trade the problem for a simpler one. Suppose we have a standard deck of cards with
no jokers. There are 52 cards. After the deck is perfectly shuffled, what is the probability that the top
card in the deck is the ace of spades?

Let us try to give a few ideas. The first option is that the probability is 1 (i.e., 100%). This is
absurd, because we know there are 52 cards and any of them could be on the top! The probability
would only be 1 if we had already peaked at the card!

Next attempt. Is the probability 0? This also seems absurd. Any card could be at the top, and
there is no reason for us to assume the ace of spades is somewhere else unless we peeked at the deck.
Hence, the probability should not be zero.

What about 1/2? We know there are 52 cards and their probabilities should add to 1. Hence, if
the ace of spaces has 50% chance of being at the top of the deck, this means there are other cards
which are much less likely to be there. We would have no way of telling that unless we peeked at the
deck!

We could keep playing this game for a long time. The conclusion is that the lesser evil is to pick
the probability as being 1/52. We cannot say that the probability must be 1/52, but we can argue
against all other possibilities because they seem unnatural. Any other choice implies we have extra
information about the deck that suggests the ace of spades should be more or less likely than other
cards. In the absence of such information, 1/52 is the best choice of attribution of probability.

The idea we employed is that the attribution of probability should “maximize the disinformation”
in the probability distribution. Unless we know something else about the deck, all cards should
have the same probability. Meanwhile, all available information should be used to improve on the
probability distribution. For example, since we know the number of cards is 52, we assign 1/52. We
are thus using the total number of cards as information to assign the probabilities.

This is how we assign probabilities in statistical mechanics. We maximize the disinformation—
known as entropy—while keeping the information we know. For example, what is the most appropri-
ate probability distribution with the property that the average kinetic energy of the particles (i.e.,
the temperature) has a given value? Different experimental constraints lead to slightly different
probabilities.

Notice this probability is not to be understood as the “true” probability, but rather as the best
possible. What is the probability that the top card is the ace of spades? At first 1/52. Now suppose
you look at the bottom card and see it is the two of hearts. Now, immediately, the best probability
for the ace of spades being the top card is 1/51, because there are only 51 candidate cards now (we
know where the two of hearts is, and it is not at the top). Hence, we abandon our previous attribution
of probability as soon as it becomes uninteresting.

Due to the very nature of entropy, it can only grow with time if we do not “peek” at the deck. I
like to think about this in terms of “I can forget information about a system, but I can only gain new
information it I look at it”. As a consequence, undisturbed systems have a never-decreasing entropy.
If we have a closed system (i.e., a system that does not receive interference from outside), its entropy
can never decrease. Hence, the total entropy of the universe can only grow. This is very similar to
how the total area of black holes in the universe can only grow.

The concept of entropy was known way before we understood it in terms of information, but it
was difficult to interpret at first. We knew, however, some of its properties, encoded in the laws of
thermodynamics.

There are four laws of thermodynamics. They are the following.

Zeroth Law of Thermodynamics: The temperature of a system in equilibrium is constant throughout
the system.

First Law of Thermodynamics: Changes to the energy of a thermodynamical system or to other
parameters obey
AE=TAS—PAV +--- | (11.1)
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where E is the total internal energy, T is the temperature, S is the entropy, P is the pressure, V
is the volume, and the dots denote other possible terms (modifications in the charge, angular
momentum, etc).

Second Law of Thermodynamics: The entropy of a closed system cannot decrease,

AS = 0. (11.2)

Third Law of Thermodynamics: The entropy of a system at temperature T = 0K is zero.
There are many subtleties with the third law of thermodynamics, but we will write it in this way for
simplicity.

Problems

Exercise 14 [Practicing with Maximum Entropy]:
Consider a standard deck of 52 cards. What is the probability that the ace of spades is the top card
in each of the following scenarios?

(a) The eight of clubs is at the bottom.

(b) The half top of the deck is comprised of only black suited cards.

(c) Every fourth card is a spade, including the top card. by
Solution:

All cases amount to identifying how much information we have about the problem and exploiting
it.

(a) Since we know where the eight of clubs is, there are only 51 cards that could be at the top.
The probability is 1/51.

(b) Since all the black cards are at the top half, we only need to know which of them is the
uppermost. There are 26 black suited cards, so the probability is 1/26.

(c) There are thirteen positions in which the ace of spades could be, one of them being the top
card. Hence, the probability is 1/13. [ |

12 Black Holes and the Second Law

The law that entropy always increases—the second law of thermodynamics—holds, I
think, the supreme position among the laws of Nature. If someone points out to you that
your pet theory of the universe is in disagreement with Maxwell’s equations®—then so
much the worse for Maxwell’s equations. If it is found to be contradicted by observation—
well, these experimentalists do bungle things sometimes. But if your theory is found to
be against the second law of thermodynamics I can give you no hope; there is nothing for
it but to collapse in deepest humiliation.
Arthur S. Eddington [19]

A curious property of black holes is the fact that they, at first sight, appear to violate the second
law of thermodynamics.

3Maxwell’s equations are the fundamental equations of electromagnetism
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Consider some box filled with matter. Our description of this box includes some entropy S,
which measures the lack of information we have about the box. For instance, maybe the box contains
a deck of cards and S,,,, measures the 52! possible combinations in which the deck is shuffled. We
know that, as long as nothing external interferes with the deck, S,,,; can only grow.

Now let us assume this box of matter is close to a black hole and will eventually fall into it. If
we consider the black hole and the box of matter as a system, their total entropy S,,.; + Sgy cannot
decrease. But what is the entropy of the black hole?

Let us first determine the temperature of a black hole. To do so, we surround it with a gas at
temperature T,. If the black hole has temperature T, it will be in thermal equilibrium with the gas
when T = T,. However, black holes can only absorb particles. Hence, it will continuously devour the
gas and only achieve equilibrium for T, = 0K. Hence, the temperature of a black hole seems to be
zero. As such, the third law of thermodynamics states the entropy should also be zero.

The curious thing is that this conclusion holds for any black hole. Let us go back to the process of
throwing a box of matter in the black hole. The initial entropy is

Sinit = Smat + S = Smats (12.1)

because Sgy = 0. The final entropy, however, is the entropy of a single black hole after absorbing the
box of matter. Hence, it is
St = Spp = 0. (12.2)

Hence, S;,;; > Sg,! The entropy of the system has decreased, and thus we have violated the second
law of thermodynamics! How can this be?

There is also a second argument, due to Geroch [20]. Suppose the box of matter has energy E,
as measured at infinity. General relativity tells us that, for a Schwarzschild black hole, the energy
measured at a radius r is given by

_26M

E(r)=Eoo \[1— ——.
cer

(12.3)

Geroch then argued that lowering the box of matter very slowly until r ~ Zsz would make E(r) ~ 0,
and thus the box could be dropped inside the black hole. The black hole would not grow (because
the box has zero energy when it is dropped), but the entropy inside the box would vanish. Thus, the
total entropy of the universe would decrease. Bekenstein [21, 22] solved this by drawing inspiration
from information theory. Entropy is a measure of disinformation. Furthermore, it can only grow.
Black hole area is thus very similar to entropy in the sense that

i. it can only grow (Hawking’s area theorem),

ii. it measures the size of the boundary between the outside universe (about which we can know)
and the interior of the black hole (which we are forbidden to see). In this sense, it measures
disinformation about the black hole.

Bekenstein then proposed that the entropy of a black hole should be taken to be

kpc3
Spy = n%ABH, (12.4)

where Agy; is the black hole’s area. 7 is an yet unknown proportionality constant (a number without
dimensions). The combination of constants following 7 is meant to give the correct units on both
sides of the equation. kg is known as the Boltzmann constant,

kg =1.380649 x 1072 JK 1. (12.5)

It serves as a conversion factor between the notions of energy and temperature and it has units of
entropy. f1, on the other hand, is known as the reduced Planck constant. Planck’s constant is

h=6.62607015 x 10734Js7!, (12.6)
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while # is given by & = h/2m, thus
h=1.054571817...x10734Js7}, (12.7)

which is exact up to the approximation given. This is an important constant in quantum mechanics
and it has dimensions of angular momentum. For example, the angular momentum of an electron
comes in multiples of /i/2, and in this sense i quantifies how “granular” is the quantum world.

If black hole area is the black hole entropy, then the second law may not be violated at all! When
throwing a box of matter inside the black hole, the black hole grows. This growth then means the total
entropy does not need to decrease, and the second law is safe as long as it is generalized: entropy
never decreases as long as one accounts for both matter and black holes.

Problems

Exercise 15 [Mass Increase in the Geroch Process]:

In the main text I did not address how black hole entropy could account for the paradox given by
the Geroch process. This was also addressed by Bekenstein [23] and we will consider it in this and
the following problems. Suppose, for simplicity, that the box of matter is spherical with radius R as
measured at infinity. Show that if the box has energy E as measured at infinity, then the minimum
amount of mass that can be added to the black hole when dropping the box is

SM i = AZ—R;V[' (12.8)
You will need to use the fact that, due to the curved geometry near the black hole horizon, an object
with radius R (as measured at infinity) put next to the event horizon of a Schwarzschild black will
have its center located at the radial coordinate

R2
r ~R5(1+—), (12.9)
4R

as opposed to the Euclidean value Rg + R. You will also need the approximation

1
1+x

~1l—x. (12.10)

S

Solution:
Since the box has a finite size, it cannot be brought arbitrarily close to the event horizon. The
closest it can come is restricted by its radius R. The smallest coordinate r it can have is then

R2
r~R5(1+—2). (12.11)
4R

At this coordinate, the energy measured is

2GM
E(r)= E\ 1— o (12.12a)

R
_ E\ 1—28 (12.12b)

r

R
~FE |1— S - (12.12¢)
R
\ Rs(l + @)
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1
—F |1— — = (12.12d)
Vv
& (12.12¢)
N Ey\| — 12.12e
2 )
\ 42
R
=F—, (12.12f)
2Rg
i (12.12g)
4GM’ o8
Since E = mc?, the mass added to the black hole when the box is dropped is
- ER
SM i =E(r)c? = YRIVE (12.13)
This means the black hole always grows in the Geroch process. [ |

Exercise 16 [Geroch Process and the Bekenstein Bound]:

Exercise 15 still does not address how the total entropy of the universe does not decrease. What if
the black hole grows just a little and the area increase is not enough to compensate for the decrease
in entropy due to the box drop? Bekenstein [23] argued that for this not to happen, the total
entropy content S of a spherical box with energy E and radius R (E and R measured at infinity)
must respect the (now called) Bekenstein bound

S < SnnkBER.

12.1
ST (12.14)

Using the result of Exercise 15, prove this. Hint: use the approximation that the increase in the
mass of the black hole during the Geroch process is much smaller than the black hole’s mass itself.
Notice this argument uses gravitational physics to arrive at a conclusion that does not involve
gravitational physics in the sense that G disappears from the equation. by

Solution:

The area of a Schwarzschild black hole is given by Eq. (4.1). If after the Geroch process the black
hole mass increases by 6 M (which we will later take to be given by the result of Exercise 15), then
the area is increased by

16nG> 16nG>M?
sA= 7 (M sM)E— BT Y (12.152)
ct ct
167G 16nG>M?
= T (M2 +26M - M+ 6MY) — ————, (12.15b)
c c
167G
= 7 (26M - M +6M3), (12.15¢)
c
32nG2M 6M
~ TC—4. (12.15d)
c
Using the result of Exercise 15, we see the minimum area increase of the black hole is
8nGER
BAmin N . (12.16)
c
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Using Eq. (12.4), we find that the minimum increase in the black hole entropy is

8nnkgER

12.1
= (12.17)

6SBH,min N
To ensure the second law holds, we require that the increase in entropy of the black hole is at least
as large as the entropy in the box. Thus,

8 SBimin = S- (12.18)

Hence, we finally get to the Bekenstein bound

s < 8n7)kBER.

12.1
e (12.19)

Exercise 17 [From the Bekenstein Bound to the Spherical Entropy Bound]:

Consider again the Bekenstein bound derived in Exercise 16. Assuming the box of matter with
energy E, radius R, and entropy S has not collapsed to a black hole, find a bound on the entropy S
in terms of the area A of the surface of the spherical box. This is known as the spherical entropy
bound [24]. Since the entropy is a measure of (dis)information, this result suggests the content
of information of a region is bounded by its area, while we would in principle think it should
be its volume. This is believed to be a fundamental principle of quantum gravity, known as the
holographic principle, and it may be an important clue to unravelling how gravity works at the
quantum level. LY

Solution:
Since the box has not collapsed to a black hole, its radius must be larger than the Schwarzschild

radius. Thus,
2GE

R> 222 (12.20)
C4
where I used E = mc* (for m the mass of the box). Rearranging yields
4
R
E<. (12.21)
2G
Now we see the Bekenstein bound yields
8nnkgER
§ < 22T (12.22a)
fic
8nnkgR c*R
< SRR (12.22b)
fhic 2G
4mnkgc3R?
= — 12.22¢
o ( )
nkgc2A
< —. 12.22d
Gh ( )
|

Exercise 18 [Susskind Process]:
There are many criticisms about the Geroch process and its use to derive the Bekenstein bound,
and there are also many criticisms about the Bekenstein bound itself. Let us consider a different
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physical process—the Susskind process [24]—and derive the spherical entropy bound considered
in Exercise 17 in a different way. Suppose you now have a spherical box of matter of energy content
E, radius R, and entropy S. Suppose you throw in extra matter at the box so that the total mass of
the system becomes that of a black hole with area A= 47R?. Show the the entropy S must satisfy
the spherical entropy bound derived on Exercise 17 to avoid an entropy decrease. oY

Solution:
We simply need to have S < Sg;, where Sgy; is the entropy of the resulting black hole. We thus
have

S < Spu, (12.23a)
k 3
= n-o—Aw, (12.23b)
kgc®
= A 12.23
U ( 0)
where A is the area of the original spherical box. [ |

13 Four Laws of Black Hole Mechanics

A considerable motivation for Bekenstein’s proposal that black hole area is proportional to the black
hole entropy is Hawking’s area theorem. Since the area of a black hole can only increase, we see a
resemblance with the second law of thermodynamics, so perhaps they are indeed related after all.
Nonetheless, it could still be this is just a mathematical coincidence. The laws of thermodynamics
follow from the probabilistic description of systems with a lot of particles, while Hawking’s area
theorem is geometrical theorem. Their proofs are not at all similar to each other. In addition to that,
we have already argued that the entropy of a black hole should be zero, if any. Black holes have no
temperature, so they should not have entropy either.

For these reasons, Bekenstein’s proposal was originally seem as not more than an analogy, not
something to be taken serious. Still, an interesting question is whether the other laws of thermody-
namics somehow also appear in black hole physics. This led to the laws of black hole mechanics, first
obtained by Bardeen, Carter, and Hawking [25].

We begin with the zeroth law: the temperature of a system in equilibrium is the same throughout
the system. We thus expect that some property of black holes in equilibrium is constant throughout
the black hole. There is such a quantity, and it is known as surface gravity, usually denoted by x.

The notion of surface gravity concerns asking: what is the force—or, more appropriately, the
acceleration—one must have to stand still at the surface of a black hole? Our discussion of the
Schwarzschild and Reissner—-Nordstrom black holes revolved around these sorts of questions, and we
can thus answer them by looking at Egs. (3.2) and (5.3). Notably, the force (and thus the acceleration)
diverges at the horizon. This is because it is impossible to escape a black hole, so from that point
onward no amount of force or acceleration will manage to bring you out. While the acceleration
at the surface is infinite, there is a caveat: this is the case for the acceleration as measured at the
horizon. What if we could measure it somewhere else?

Let us do the following. Tie a box to a very long rope. Now, we can keep the box still at the
surface of the black hole by holding it afar with the rope. If the force on the rope is too large, the
rope will break, but we will assume it is a perfect rope that does not break (although they don’t sell
those anymore). Now stretch the rope from the box (near the black hole) until infinity, so you are
holding the box from very afar. The force you need to do on the rope at infinity to keep the box still
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is given, for a Schwarzschild black hole, by

2GM
Foo = \|1— ——F(r), (13.12)
c4r
GM
- zm, (13.1b)
r

where F(r) is given by Eq. (3.2) and r is the radial coordinate of the box we are holding. As one
approaches the event horizon, we see the acceleration we need to input on the rope at infinity is
given by

F c*
Qoo = — = . 13.2
*° m 4GM ( )
We will define this as the surface gravity. Hence, for a Schwarzschild black hole,
o4
K = . (13.3)
4GM
For a Kerr—-Newman black hole, the expression is more complicated. It is
4 Q2 2J2
Me \/ 1 = freooi® ~ G2
K= . (13.4)

2 _ Q2 _ c2J2 _ Q2
26M (1 + \/1 4negGM?2  G2M*  8meyGM?2
Importantly, notice x is constant on the event horizon. This is the zeroth law of black hole mechanics:
the surface gravity of a black hole in equilibrium is constant throughout the event horizon.

The next question is how changes to the parameters of the black hole affect its area, which would
correspond to the first law. The answer is

AM = ——AA+--, (13.5)
871G

where the dots denote the contributions due to changes in the electric charge or spin. Notice that
we already started with A being analogous to entropy. The zeroth law told us « is analogous to
temperature, and M is literally the energy of the black hole (up to a factor of ¢2). Hence, this equation
is indeed very similar to Eq. (11.1).

The second law we already know: AA > 0, which is Hawking’s area theorem.

In this way, we see the mechanics of black holes is very similar to ordinary thermodynamics.
Nevertheless, at this point this is merely an analogy: black holes have no temperature, right?

Problems

Exercise 19 [Third Law of Thermodynamics and Extremal Black Holes]:

Show that the surface gravity of an extremal black hole (see Exercise 7) is zero, but its area is not.
How does this compare to the third law of thermodynamics?
This example shows that the third law of black hole mechanics is more subtle than the others. A
different formulation of the third law of thermodynamics states that it is impossible for a system to
reach T = 0K in finitely many steps. In this case, it could be translated to black hole mechanics by
stating that it takes an infinitely long time for a black hole to become extremal. Bardeen, Carter,
and Hawking [25] already believed this to hold because, otherwise, we could be at risk of getting a
naked singularity if the process could go further. The rigorous statement was eventually given by
Israel [26]. b3
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Solution:
The result follows by plugging in Eq. (6.4) (with an equality) at the expressions for the surface
gravity and area of a Kerr-Newman black hole, Egs. (6.3) and (13.4). ]

Exercise 20 [Revisiting the Bekenstein Bound and the Geroch Process]:
In Exercise 16, we used an expression relating the change in the area of a Schwarzschild black hole
to the change in its mass—Eq. (12.15). Verify this equation to be consistent with the first law of

black hole mechanics. ey
Solution:

Follows from the first law of black hole mechanics and the expression for x in the case of a
Schwarzschild black hole. |

14 Superradiance

Our argument for black holes to have no temperature is based on the understanding that nothing can
leave them. As a consequence, they can only absorb particles, and are unable to maintain equilibrium
at any nonzero temperature.

There is a loophole, though: the Penrose process. We have seen before that by carefully throwing
something near a rotating or charged black hole, we can extract energy from it. The trick is that we
are actually throwing negative energy in the black hole, rather than actually pulling something out of
it. Regardless, the net effect is similar to what we would get if we dragged some energy out of the
black hole.

While I talked about this for the case of the Penrose process, which means using particles and
breaking them down in an appropriate manner, we could have followed a different route. Suppose,
instead, we throw in a wave at the black hole. This could be a light beam, for instance. Just as with
the Penrose process, there are situations in which we can arrange for the light beam to emerge from
the black hole with more energy than it went in. In more intuitive language, the beam arises from
the black hole brighter than it went in!

When we are talking about waves instead of particles, this phenomenon is known as superradiance.
It is another example that by throwing something at a rotating black hole, you can sometimes extract
something from it (in the sense of the beam coming back with more energy). This is very similar
to the phenomenon of stimulated emission in atomic physics—by throwing light at an atom, we
can often interact with the atom in precisely the way needed for them to emit even more light in
return (this is actually the basic functioning method for the laser). In atomic physics, there is also a
phenomenon known as spontaneous emission, in which the atom emits light without the need for
external stimulation. This suggests that maybe a rotating black hole could somehow emit energy
without the need of throwing something in first.

For this reason, it was believed in the early 1970s that rotating and charged black holes could
emit energy in some form. When looking from afar, this would look like the black hole was emitting
particles. Hence, there is a change some black holes could be hot after all. We would not expect all
black holes to emit particles in this sense. For instance, there is no reason to believe a Schwarzschild
black hole would emit energy, especially because if the mass of a Schwarzschild black hole decreases,
so does its area.

For these reasons, it was surprising when Hawking [27, 28] showed that even Schwarzschild
black holes emit particles. Not only that, but they do it as if the particles were at a fixed temperature,
which is proportional to the surface gravity . This is exactly what the analogy with thermodynamics
would suggest.
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15 The Dirac Sea

To understand Hawking’s result, I like to first discuss a bit of quantum mechanics. I find the idea of
the Dirac sea particularly illuminating.

Quantum mechanics is one of the pillars of modern physics, the other being general relativity.
While relativity describes the behavior of spacetime, quantum mechanics—more specifically quantum
field theory—is the language in which all other content in the universe is described. For us, the
description of electrons will be particularly important.

Within quantum mechanics, electrons are described by an equation known as the Dirac equation.
While its details are unimportant for us, a curious property Dirac found in the solutions to his equation
(also called states) was that there were not only regular electrons, but also strange solutions with
negative energy. Now, this is not negative potential energy, but negative kinetic energy. Hence, it is a
very strange feature, and typically considered unphysical. For example, a positive-energy electron
could be accelerated by any amount, as long as we did the same to a negative-energy solution. The
sum of the energies would cancel out, and we would get a runaway solution. That is, a solution which
reaches infinite values in finite time. We do not observe these things in nature, and as a consequence
negative energies are usually frowned upon. It was thus a challenge to understand what the negative
energy solutions in the Dirac equation meant.

To make sense of these solutions, Dirac used something known as Pauli’s exclusion principle.
Pauli’s principle says that two electrons cannot both occupy the same state at the same time. This
means two electrons cannot share all the same properties (energy, momentum, spin, and so on). At
least one of them must be different.

Dirac noticed this means that if a solution with negative energy is already “filled” (there is already
an electron with those properties), then it is impossible for another electron to carry the same
properties. Pauli’s exclusion principle forbids it. He then imagined all the negative energy solutions
were already filled, but the positive energy solutions were not. In this way, electrons could occupy
the free positive-energy spaces, but the negative-energy levels would be forbidden because they were
already occupied. Since all of them were occupied, those negative-energy electrons would not be
able to get an even-more-negative energy, because there would already be electrons below blocking
their way.

This is usually referred to as the Dirac sea. The negative-energy electrons are like the water on
the sea, filling everything until the bottom (which, in this case, is infinitely below). Above the see,
there is freedom for particles to move, and for the regular electrons to propagate.

What if an electron in the negative-energy sea gains energy by some process (for example, by
absorbing a ray of light) and its energy becomes positive? Then it moves up to the positive-energy
region, like a droplet leaving the ocean, and leaves a hole behind. The hole in the negative-energy sea
then behaves like the opposite of an electron. Other electrons can move into the hole, thus making
the hole move around. We can interpret the hole as a particle with positive-energy (because it is
a sudden region in which energy is not as negative in the middle of the negative-energy sea) and
with positive charge. This is then called an antielectron, or a positron. This behavior is illustrated on
Fig. 4.

We see thus that the difference between an electron and a positron concerns whether they are
associated to a solution with positive or negative energy. Particles are associated to positive-energy
solutions, while antiparticles are associated to negative-energy solutions.

Recall, however, one of the discussions we had at the beginning. It does not make sense to ask
about the energy of something, but only the energy relative to a given observer. If both Alice and Bob
agree on what is positive and what is negative energy, then they will agree on what are particles and
what are antiparticles. However, if they happen to disagree on what is the sign of energy in a few
cases, they will disagree on what they call particle.

In the universe, we cannot talk about particles. Only particles relative to some observer!
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Figure 4: The Dirac sea. Top left: all negative energy states are already filled by electrons. No
electrons can get even more negative energy because the lower states are already filled. Top right:
some electrons can gain energy and move to the positive-energy region, leaving holes behind them.
Bottom left: the positive-energy electrons can move around to different states, and negative-energy
electrons can occupy the holes left behind. In practice, the behavior is as if the holes themselves were
moving. Bottom right: the positive-energy electrons and positive-energy holes (positrons) behave
like opposites of each other and can both move freely.

16 The Hawking Effect

Still writing this one!

17 Advanced Topics

Displacement memory effect and connection to Weinberg soft graviton theorem
Exercise: Braginsky—-Thorne gives no memory for mergers

Cosmic censorship conjectures and naked singularities

3D relativity and the BTZ black hole

BHT, Hawking effect
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17.1 Interesting Questions to Address
(a) what about white holes?
(b) spaghettification
(¢) can black holes move?

(d

Technical Reading

Since this book is not intended as a technical reference, I omitted most technical references from the
main text, and tried only to list the original papers when I was reproducing their ideas or computations.
Nevertheless, now is a good time to discuss references for the more technical readers who want to
see more of the subject.

First let us talk about historical accounts. John A. Wheeler’s autobiography, Ref. 2, tells the story
of black hole physics and black hole thermodynamics from the first person perspective of one of the
most important physicists of the XX century. It is mostly non-technical, and one of my favorite books
ever. The story of singularities and how we came to understand them better in black holes is told, for
example, by Earman [29]. The paper by Almeida [30] was surely very influential for me in explaining
how the Penrose process led to black hole thermodynamics, and it was always at the back of my mind
while writing. Belfer [31] tells how information was a key perspective for Bekenstein’s milestone
of interpreting black hole area and entropy as the same physical quantity. The interpretation of
Aristotelian physics as an effective theory—i.e., an approximation that works well within its limits—is
due to Rovelli [32], and reading his outreach books certainly influenced my enjoyment in starting
physics texts with hints of Greek philosophy.

When it comes to “basic” black hole physics, there are many great textbook accounts. Some of
the most remarkable for me are those by Wald [3], Hawking and Ellis [33], and Poisson [34]. For the
specific aspects of drawing event horizons and ergospheres I relied on papers by Smarr [1], Sharp
[35], and Pelavas, Neary, and Lake [36]. A technical discussion of the no-hair theorem is given in the
review by Chrusciel, Costa, and Heusler [37].

There are some specialized texts in black hole thermodynamics. A few notable ones are those by
Wald [38, 39], Wall [40], and Witten [41]. My views on entropy (in regular thermodynamics) are
heavily influenced by informational perspectives, most notably the discussion by Toffoli [42]. Many
interesting developments have happened since the review by Bousso [43] was written, but it still has
an excellent discussion of entropy bounds (such as the Bekenstein bound and the spherical entropy
bound), their criticisms, and how they relate to ideas in quantum gravity.

Experimental values are typically taken from the Review of Particle Physics [44].

A Gedanken Experiments to Destroy a Black Hole

In this appendix, I describe a seminal paper by Wald [11] which was the topic of the students’ final
presentation at the original version of this course. This paper was briefly mentioned in Exercise 6,
but we now give a more comprehensive discussion.

We expect that, after a black hole is formed—for example through the collapse of a star—it should
eventually settle down and stop evolving. When this happens, we expect the no-hair theorem to
ensure the resulting black hole is a Kerr—Newman black hole. In other words, after a black hole
is formed, we expect it will eventually be described by only its mass, electric charge and angular
momentum.
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If this is the case, then the results of Exercise 7 tell us that the black hole should respect

omzs L &L
" 4ne, GM?

(A.1)

Otherwise, the area of the event horizon would not be a real number. In practice, this means there is
no event horizon, and we do not have a black hole. We would still have some points with infinite
curvature in the spacetime, and thus we would have a singularity without having any event horizon.
This would be a naked singularity.

Naked singularities are problematic because worldlines—i.e., the “histories” of things moving on
spacetime—can fall at them in finite time. For instance, an astronaut could fall in the singularity
and their story on spacetime would suddenly end. The astronaut would simply no longer be in the
spacetime. The same, however, would be true in reverse: things could in principle come out of the
singularity and we would not be able to predict anything about this. Hence, we would lose the ability
to predict what happens in the future given the information of what is happening in the universe
right now. Since predictions are the core of physics, this is considered very troublesome.

If the singularities are hidden behind black holes, there is no problem. In this case, then the
outside of the black hole cannot be affected by the singularity, because nothing can cross the event
horizon from the inside to outside. Therefore, we are still able to make predictions in the outside.
Hence, physics is much more reliable if all singularities are hidden behind event horizons*.

Many calculations in black hole physics assume that gravitational collapse (such as the death of a
star) cannot lead to a naked singularity. If it did, we would have a lot of difficulty making predictions,
and thus the calculations become much more complex to handle. The belief that gravitational collapse
cannot lead to naked singularities is known as the “weak cosmic censorship conjecture”. As stated by
Wald [45],

The fundamental issue addressed by weak cosmic censorship can be expressed in graphic
terms by posing the following question: Could a mad scientist—with arbitrarily large,
but finite, resources—destroy the universe?

Robert M. Wald [45]

If one could create a naked singularity after gravitational collapse, then its effects could in principle
affect distant observers and spoil the good causal behavior of the universe. In other words, knowing
the present would not be enough to predict the future. Weak cosmic censorship states we do not have
to worry about this.

While the weak cosmic censorship conjecture is a very important statement in general relativity,
we still do not have a proof of it. This is what the word “conjecture” implies: we have strong reasons
to believe in it, but we still have not been able to give a complete argument to establish that it is
indeed true.

With this background in mind, Wald [11] proposed gedankenexperiments to try to violate two
conjectures:

i. gravitational collapse cannot lead to naked singularities,

ii. black holes resulting from gravitational collapse eventually settle down to Kerr—-Newman black
holes.

The goal was not to provide a complete proof that these results are true—this is very difficult—but
rather to gain intuition about them. We try to prove them wrong, and if we fail to do so we will
believe more strongly in them. Not a proof, but still evidence.

“One notable exception is the Big Bang. While it is not behind an event horizon, there is no problem with having a
singularity if it is to the past of everything in the universe. In this case, all things that could come out of it have already
come out, and we can still make predictions.
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The gedankenexperiments proposed by Wald [11] are then the following. Let us suppose a star
collapsed to a black hole and eventually got well-approximated by the Kerr—-Newman solution. Then
we know (Exercise 7) that the mass M, electric charge Q, and spin J of the black hole must satisfy
Eq. (A.1). This then brings an interesting question: can we throw particles into the black hole in a
way that we increase Q and J a lot, but increase M so little that Eq. (A.1) eventually breaks down?
If so, then we will violate a basic rule of Kerr—Newman black holes. This means that we will either
create a naked singularity, or we will end up with a different sort of black hole. Hence, one of the
two conjectures will be violated.

The calculations done by Wald use the complete technicalities of the Kerr-Newman spacetime.
Hence, I will not follow them in detail, but rather present a simplified version. The purpose of
the equations is to understand the ideas better, and for us it will be sufficient to work with a few
approximations just to get a feeling for the physics. Of course, the full general relativistic calculations
are much more convincing at a research level.

Instead of working with the full Kerr-Newman case, let us consider the charged and spinning
cases separately. We begin with the charged case (i.e., a Reissner-Nordstrém black hole). This is
Exercise 6, but I will discuss it again for completeness. We know it satisfies

G1\42>Q_2

= > A2
4meg (4-2)

which is just Eq. (A.1) with J = 0. We will try to throw in a particle with mass m, energy E and
charge q. If the particle starts at rest, then the energy is E = mc2, but if it starts in motion it is larger
(we have to add in the kinetic energy). To improve our odds of breaking Eq. (A.2), let us assume we
start with an extremal black hole, so the initial state is

GM? = < :
4meg

(A.3)

If we manage to increase the charge just a bit more than the mass, then we will destroy the black
hole. For Q > 0 (which we assume for simplicity), we get

VGM = Q ) (A.4)

477:60

Let us first try by dropping a particle from rest. Then E = mc2. If we ignore any gravitational
waves, then the final mass of the black hole will be M + m, but the final charge will be Q + q. If there
are gravitational waves, then the final mass of the black hole is smaller than M 4+ m (some energy
is lost in the form of gravitational waves), but the charge is still the same. This means our odds of
destroying the black hole would be better. Wald did consider this in his calculations, but I will ignore
to keep things simple. For the black hole to be destroyed we need

+q)2
G(M +m)? < M. (A.5)
47-560
It is convenient to rewrite this as Q+
VM +m) < —2L (A.6)
4meg

where I assumed Q + g > 0 for simplicity (the other case needs an extra negative sign).
The force on the test particle due to the black hole will be

GM 1
F~ m_ Q

) A7
r2 4meq 12 A7
where F > 0 means the force points toward the black hole. Hence, for the particle to fall toward the

black hole we need
GMm S 1 Qgq

r2 4mey r2’

(A.8)
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and this implies
GM
1 =R (A.9)
4meg Q

Hence, using Eq. (A.4) we find that

Q+q < Q N Va4neaGMm
Vane, +/4meq Q ’
= VG(M +m), (A.10b)

(A.10a)

which violates Eq. (A.6). Hence, if we drop a particle, it will not be attracted to the black hole if it
would destroy it!

We can then try to throw in the particle, instead of merely dropping. In this case, the kinetic energy
of the particle will be nonvanishing. Hence, the new mass will not be M +m, but M + Ec™2 > M + m.
This turns out to be sufficient to prevent the particle from going in! Hence, if the particle would
destroy the black hole, it simply will not enter it!

Wald’s original calculation does not consider what happens if we accelerate the particle toward
the black hole (he only considers the cases of dropping it, or throwing it in with an initial velocity).
Nevertheless, applying a force means doing work on the particle, and hence we expect E to go up
and the increase in mass to be larger.

Next let us consider a Kerr black hole. Then Eq. (A.1) implies

272
ceJ
GM? > , A11
Ve ( )
which we can rewrite as (I assume J > 0 for simplicity)
GM?
> J. (A.12)

c

Once again, we consider the extremal case, which is as close to a naked singularity as possible. Then

GM?
=J. (A.13)

c

Now we try to throw in a particle with mass m and angular momentum j. There are two ways for
the particle to have a large value of j: it is either translating around the black hole (like the Earth
around the Sun) with a large speed, or it is spinning around itself (like the Earth around itself) at a
large angular velocity. Let us consider each case separately.

In the first case (the particle revolves around the black hole), large values of j need a large orbit.
It turns out that for j to be large enough for us to get

M 2
G(M +m) <
c

J+]. (A14)

This means
. 2GMm Gm? GMm
j> + > .

(A.15)
c c c

Now let us consider a particle spinning with angular momentum j around a mass M. We suppose
it is spinning around the equator of the Kerr black hole. In Newtonian gravity (which is simple enough
for us to gain intuition), the force on the particle along the radial direction will be

_ GMm  j?

F -
r2 mr3’

(A.16)
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where the second term is the centrifugal force. This is the effect we feel in a car making a turn, for
example, in which we are pushed toward the door. As before, F > 0 means the force points toward
the black hole. Notice that if j is very large, then the force will be negative. Using Eq. (A.15), we find

GMm  j2
F = —

2 ﬁ, (A17a)
GM G*M?

< rzm— c2r3m (A.17b)
GM GM

_ r;n(r—‘;r)' (A.17¢)

Hence, the force will push the particle outward for r < GM /c2. For an extremal Kerr black hole, this
is exactly where the event horizon is located! Hence, the particle will be pushed out of the black hole.
Notice the inequality on Eq. (A.15) is actually stronger than the one I used, so the force becomes
negative farther away from the horizon (I also ignored the relativistic effects for simplicity).

In practice, what this means is that if j is too large, then the particle will not be able to come
close to the black hole. It needs to have a very large orbit to have large values of j, and thus it misses
the black hole. Once again, we cannot throw the particle in!

Now what happens if the particle is spinning? In this way, it could also have a very large j, but
perhaps without a large orbit. The first remark is that if the particle is orbiting and spinning, then
gravitational waves can carry angular momentum away. We thus focus on the case in which the
particle is spinning around the same axis as the black hole and is falling on it from above (not from
the equator, for example). What happens then?

The trick is that once again a force shows up to prevent the particle from falling in. While this
does not happen in Newtonian gravity, in relativity we find that bodies spinning along the same
direction repel each other [6]. This repulsion is just enough to prevent the particle from falling in.

These thought experiments do not prove the conjectures we started with are true. However, they
show how it can be difficult to violate them. This increases our confidence that the conjectures are
true, even though we have not proven them. It appears the universe conspires to prevent us from
destroying black holes.
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