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1 Spinors and twistors

1.1 Spinors in Minkowski spacetime

Recall that the (orthochronous proper) Lorentz group SO(1, 3) can be viewed as the

group of matrices acting on R4 which leave the bilinear form

⟨x, ηy⟩ .
= x0y0 − x1y1 − x2y2 − x3y3 = ηabx

ayb, ∀x, y ∈ R4, (1.1)

invariant, where η is the Minkowski metric written as

η =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.2)

This means that we are interested in matrices Λ such that

⟨Λx,Ληy⟩ = ⟨x, ηy⟩ ⇐⇒ ΛT ηΛ = η. (1.3)

We usually call R4 equipped with the metric η Minkowski spacetime and the Lorentz

transformations Λ can be seen as automorphisms of this space.

Now, given some vector v ∈ R4, one can construct a 2× 2 Hermitian matrix by

vαα̇
.
=

(σa)
αα̇

√
2

va =
1√
2

(
v0 + v3 v1 − iv2

v1 + iv2 v0 + v3

)
, (1.4)

where the σa are the Pauli matrices. The indices α and α̇ run from {0, 1} and {0̇, 1̇}
respectively.

If we compute the determinant of this matrix, we find that

2 det
(
vαα̇
)
= ηabv

avb. (1.5)
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Hence, the Lorentz transformations defined by the relations in equation (1.3) can be recast

in this notation as the 2×2 matrices which preserve the determinant of the matrix in (1.4):

vαα̇ → ṽαα̇ = tαβv
ββ̇ t̄α̇

β̇
, (1.6)

where t̄α̇
β̇
= (t†)αβ = (t−1)αβ. Hence, the matrices t are part of the SL(2,C) group of

2× 2 complex unitary matrices. The indices α and α̇ are then said to live in a (12 , 0) and

a (0, 12) representation of SL(2,C)× SL(2,C) respectively.
The transformation in (1.6) defines a linear transformation on the vector va preserving

its length. We are then led to a group homomorphism SL(2,C) → SO(1, 3) which is

onto. The kernel of this homomorphism consists of the identities ±ISL(2,C), so, by the

fundamental theorem of group homomorphisms [1] we get an isomorphism

SO(1, 3) ≃ SL(2,C)/{+I,−I} .
= PSL(2,C), (1.7)

where PSL(2,C) is sometimes called the special projective group. The SL(2,C) is called

the universal cover of the Lorentz group.

Now, we are led to consider what exactly are the objects on which the elements of

SL(2,C) acts on. That is, what exactly is the relationship between the two-component

complex vectors which live in the representation space of SL(2,C) and the vectors which

live in Minkowski spactime?

We can get a clue of this answer by considering null or light-like vectors. Recall that a

vector va is called null if ηabv
avb = 0, that is, if its norm vanishes. By equation (1.5), this

means that the determinant of vαα̇ vanishes. This implies then the the rank of the matrix

is 1 and that we can write

vαα̇null = aαãα̇, (1.8)

that is, the outer product of two two-component spinors a and ã. The converse is also true:

any matrix of the form aαãα̇ has rank one (exercise). Because each one of these spinors live

in a different representation of SL(2,C)× SL(2,C), we say they have opposite chiralities.

The α̇ is said to have positive chirality and the α is said to have negative chirality.

So now we are working with two-component complex vectors on which we act with

elements of SL(2,C). This means that, at the level of a vector space, we are in fact

working in C2. In the next section, we will see how to recover R4. To upgrade C2 to a

“spacetime”, we should equip it with a metric tensor analogous to the Minkowski metric.

This is done by selecting the Levi-Civita symbols in two dimensions:

ϵαβ =

(
0 1

−1 0

)
= ϵα̇β̇. (1.9)

It is easy to see that this is an element of SL(2,C) and that it is invariant under the action

of that group (exercise). The inverses are defined by

ϵαβϵγβ = δαβ , ϵαβϵαβ = 2. (1.10)

We will then use this tensor to raise and lower indices. Now, unlike the Minkowski met-

ric (1.2), the Levi-Civita symbol in equation (1.9) is anti-symmetric (or skew-symmetric),
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meaning ϵαβ = −ϵβα. Hence, we must fix our convention on how exactly we raise and lower

such indices. Our convention will be “lowering to the right and raising to the left”, i.e.:

aα
.
= aβϵβα, bα

.
= ϵαβbβ. (1.11)

The same convention holds for dotted indices. We can use these conventions to define the

dual vector of vαα̇ defined in equation (1.4), which is written as vαα̇ and yields vαα̇vαα̇ =

2det
(
vαα̇
)
(exercise). With these, we can write an line element in (C2, ϵαβ) as

ds2 = ϵαβϵα̇β̇dx
αα̇dxββ̇. (1.12)

To conclude this section, we introduce the so-called SL(2,C)-invariant inner products

⟨κω⟩ .
= καωα = καωβϵβα, [κ̃ω̃]

.
= κ̃α̇ω̃α̇ = κ̃α̇ω̃β̇ϵβ̇α̇. (1.13)

Notice that, unlike the usual notion of an inner-product, the anti-symmetric nature of the

Levi-Civita tensor forces these inner-products to be themselves anti-symmetric. Moreover,

if one takes either of the inner-products of a spinor κ with itself, one gets a vanishing result

(exercise). These inner-products can be related to the usual inner-product of null vectors

in Minkowski spacetime: as we saw in equation (1.8), a null vector is written as the product

of two spinors of opposite chirality. Hence, one can easily see (exercise) that for two null

vectors vαα̇null = κακ̃α̇ and wαα̇
null = ωαωα̇ we have

vnull · wnull = ⟨κω⟩[κ̃ω̃] (1.14)

where the dot product is understood to be the usual inner-product in Minkowski spacetime.

The use of twistor theory in the context of string theory and scattering amplitudes

has origin in the so-called Parke and Taylor scattering formula of n massless gluons. Since

they are massless, the momentum vector can be written as a product of two spinors

pµi = πα
i π̃

α̇
i . (1.15)

The scattering amplitude at tree-level is then given in terms of the inner products defined

above:

An =
⟨πiπj⟩4δ(4)(

∑
k pk)

⟨π1π2⟩⟨π2π3⟩...⟨πn−1πn⟩⟨πnπ1⟩
. (1.16)

The extension of this formula to N = 4 super Yang-Mills by Nair led Witten to formulate

the latter as a string theory in a specific twistor space.

1.2 Complexifying Minkowski

We saw that we have a natural correspondence between (R4, ηab) and (C2, ϵαβ) if we

look at them as metric spaces with a non-positive definite metric. In general, a generic

spacetime (M, g) can be fully described if we consider the line element

ds2 = gab(x)dx
adxb, (1.17)
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for a generic metric g. We can then define the complexification of (M, g), denoted by

(MC, g), as allowing the coordinates xa to take complex values and making g(x) a holo-

morphic function of our coordinates (meaning there is no dependence on the complex

conjugate x̄a). We will focus on the complexification of Minkowski spacetime throughout

these lectures.

This means that we will be effectively working in C4. The isometry group is SO(4,C)
which is locally isomorphic to SL(2,C) × SL(2,C). This means that any vector on MC
can be represented by a pair of SL(2,C) indices.

Even though the line element looks the same after complexification, i.e.,

ds2 = ηabdx
adxb = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2, (1.18)

we now allow the coordinates to take complex values, which makes the notion of a “signa-

ture” irrelevant. In fact, one can obtain any version of “Minkowski” spacetime by selecting

different real “slices” of MC.

How do we do this? The answer is by adopting different complex conjugations. Notice

that we can coordinatize the complex space by xαα̇ defined in (1.4). If we define the

complex conjugate of xαα̇ by

(xαα̇)†
.
=

1√
2

(
x̄0 + x̄3 x̄1 − ix̄2

x̄1 − ix̄2 x̄0 − x̄3

)
, (1.19)

that is, simply taking the conjugate transpose of xαα̇, then we can set xαα̇ = (xαα̇)† to

recover the real part of the coordinates and hence Lorentzian signature. We notice that

this conjugation is carried over to the spinors:

κ̄α̇ = (ā, b̄), ¯̃ωα = (c̄, d̄). (1.20)

This conjugation allows us to write the null vector correspondence in (1.8) for any real null

vector in terms of κα and κ̄α̇.

This seems simple, but we can also recover Euclidean signature if we define a slightly

different complex conjugation:

x̂αα̇
.
=

1√
2

(
x̄0 − x̄3 −x̄1 + ix̄2

−x̄1 − ix̄2 x̄0 + x̄3

)
. (1.21)

We now demand that xαα̇ = x̂αα̇, which forces (exercise)

xαα̇ =
1√
2

(
x0 + iy3 iy1 + y2

iy1 − y2 x0 − iy3

)
. (1.22)

with x0, y1, y2, y3 ∈ R (just take xj = zj+iyj). Taking the determinant now gives (exercise)

2 det
(
xαα̇

)
= (x0)2 + (y1)2 + (y2)2 + (y3)2, (1.23)

which is just the Euclidean metric on R4. As in the Lorentzian case, this induces a complex

conjugation on the spinors which goes as

κ̂α = (−b̄, ā), ˆ̃ωα̇ = (−d̄, c̄). (1.24)
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One can check (exercise) that this operation does not square to the identity and in fact

one needs to apply this conjugation four times to go back to the original spinor. This has

a nice consequence: there are no non-trivial combinations καω̃α̇ which is preserved under

the hat-conjugation, which means there are no real null vectors in Euclidean space.

Exercise: Define the complex conjugate

xαα̇
.
=

1√
2

(
x̄0 + x̄3 x̄1 + ix̄2

x̄1 − ix̄2 x̄0 − x̄3

)
. (1.25)

Now, demand that xαα̇ = xαα̇. What kind of signature do we get? What is the action of

this conjugation on the spinors? What kind of spinors are they?

1.3 Twistor space

We are now ready to define the twistor space. This will be a subset of the 3-dimensional

complex projective space, CP3. We can take many subsets of this space and in the following

lectures we will explore the different possibilities.

The CP3 space is obtained from C4 with homogeneous coordinates ZA = (Z1, Z2, Z3, Z4)

excluding the origin and with the equivalence relation

rZA ∼ ZA,∀r ∈ C\{0} ≡ C×. (1.26)

The twistor space of MC, denoted as PT, is obtained by first dividing the homogenous

coordinates ZA into two Weyl spinors of opposite chirality

ZA = (µα̇, λα), (1.27)

subjected to the constraint

µα̇ = xαα̇λα. (1.28)

Equations (1.28) are referred to as incidence relations and they select a complex plane

C2 ⊂ C4, much like a linear equation of the form y = ax selects a line in the real plane

with coordinates (x, y). By considering the scaling relation in (1.26), we define a CP1 ⊂ PT.
Now, the relationship of PT with spacetime is rather intriguing if we consider that the

linear coefficient xαα̇ in (1.28) in fact corresponds to a point in spacetime. The twistor

correspondence then tells us that a point in Minkowski spacetime corresponds to a linearly

and holomorphically embedded Riemann sphere in twistor space.

In fact, any holomorphic linear embedding of a Riemann sphere can be put in the form

of the incidence relations (1.28). This is done by considering σa = (σ0, σ1) as homogeneous

coordinates on CP1 and defining the maps

µα̇ = bα̇aσa, λa = caασa, (1.29)

where (bα̇a, caα) are 8 complex parameters to be determined. We can use the 3 automor-

phisms of CP3 together with the projective reescaling (1.26) to reduce these to 4 complex

degrees of freedom, giving

µα̇ = bα̇aσa, λa = δaασa. (1.30)
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So, a point x in spacetime corresponds to a linearly embedded Riemann sphere (some-

times called a “line”) CP1 ≡ X ⊂ PT, making this relation highly non-local.

We can ask the converse question: what does a point in twistor space correspond to in

spacetime? If we consider a point Z ∈ PT as the intersection of two lines X and Y , then

X ∩ Y = {Z ∈ PT} ⇐⇒ µα̇ = xαα̇λα, µα̇ = yαα̇λα. (1.31)

This relationship yields

(x− y)αα̇λα = ϵαβ(x− y) α̇
β λα = 0, (1.32)

which is only non-trivial in two-dimensions if (x − y)αα̇ ∝ λα. This is just a consequence

of the anti-symmetry of the ϵ tensor. We can use the free index to write

(x− y)αα̇ = λαλ̃α̇, (1.33)

for some λ̃α̇. But we saw that this means that (x − y)αα̇ is a null vector and thus the

points x and y are null separated! Furthermore, the point Z in twistor space is obtained

by varying the choice of λ̃α̇. The result is a 2-plane where every tangent vector has the

form λαλ̃α̇, which is called an α-plane.

In summary, a point in Minkowski spacetime corresponds to a line in twistor space

while a point in twistor space corresponds to a null vector in Minkowski spacetime.

2 Twistor Geometry

2.1 Reality structures

In the first lecture, we saw that we could pick different notions of a conjugation (which

are a choice of reality structure) to recover different spacetimes from C4. How do these

translate in twistor space?

For the Lorentzian signature, equation (1.19) implies that the coordinates ZA =

(µα̇, λα) on twistor space has the conjugate

Z̄A .
= (λ̄α̇, µ̄

α). (2.1)

Hence, the components change in the representations. Since this conjugation switches the

two representations, we are led to consider the dual twistor space PT∨ which is the same

subset of CP3 as PT but with coordinates

WA = (λ̃α̇, µ̃
α). (2.2)

To make the complex conjugation more explicit, we slightly modify the incidence relation

(1.28) to include a factor of i (which doesn’t change the basic geometry of twistor space):

µα̇ = ixαα̇λα, µ̃α = −ixαα̇λ̃α̇. (2.3)

There is a natural inner product between these two spaces which stems from contracting

the obvious indices:

Z ·W .
= ZAWA = [µλ̃] + ⟨µ̃λ⟩. (2.4)
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Naturally, this inner product extends to Z and Z̄:

Z · Z̄ = [µλ̄] + ⟨µ̄λ⟩. (2.5)

This inner product gives us a condition to associate a line X ≃ CP1 in PT to a

spacetime point xαα̇ on real Minkowski spacetime. Using the incidence relations in (2.3),

we can rewrite (2.5) as (exercise)

Z · Z̄ = i(x− x†)αα̇λαλ̄α̇. (2.6)

On the other hand, the reality condition implied by conjugation (1.19) tells us that x is a

spacetime point if and only if x = x†. Hence, the set of points of X which correspond to

Minkowski spacetime are

PN = {Z ∈ PT|Z · Z̄ = 0}. (2.7)

This is often called the space of null twistors and it is the twistor space of Minkowski

spacetime. Therefore, a line X corresponds to a point in real Minkowski spacetime if it is

contained in PN.
We can ask the converse question: given a point in PN, what is the corresponding

structure in MC? We already know that in spacetime, the points of PT are α-planes λαλ̃α̇,

so the condition Z · Z̄ = 0 singles out the plane λαλ̄α̇. Hence, a point Z ∈ PN corresponds

to a real null geodesic in Minkowski! The lesson is: lines in PN intersect if and only if their

corresponding points in spacetime are separated by a real null geodesic.

We can do the same reasoning for Euclidean signature. Recall that the quaternionic

conjugation acts on spinors as

µα̇ = (a, b) 7→ µ̂α̇ = (−b̄, ā), λα = (c, d) 7→ λ̂α = (−d̄, c̄). (2.8)

Hence, by acting on a twistor we don’t change representations as in the Lorentzian case:

ZA = (µα̇, λα) 7→ ẐA = (µ̂α̇, λ̂α). (2.9)

Now, on twistor space, the hat conjugation acts as an involution, i.e., σ : PT → PT with

σ2 = −id (exercise). Hence, there are no points in PT which are invariant under σ. This

is just the statement that there are no real null geodesics in Euclidean space, which is

expected since the metric is positive-definite.

In Euclidean space, on the other hand, the lines are preserved under σ. We can define

a bi-twistor by XAB = Z
[A
1 Z

B]
2 which takes the following form when the points Z1 and Z2

lie on the same line X (exercise):

XAB = ⟨λ1λ2⟩

(
1
2ϵ

α̇β̇x2 xα̇β

−xβ̇α ϵαβ

)
. (2.10)

Hence, this bi-twistor represents the line X since both points Z1 and Z2 lie on it. This

is just a generalization of the statement that there is a unique line passing through two

points. One can show then (exercise) that XAB = X̂AB. This means that considering

Euclidean reality conditions, every point Z ∈ PT is associated to x ∈ R4 by taking the line

which passes through Z and Ẑ, i.e., XAB = Z [AẐB].
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Exercise: Show that the conjugation in (1.25) also acts as an involution on twistor space.

What are the points of PT preserved under this conjugation?
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